Skip to main content
Log in

Vanadium-doped ZnO nanorods: magnetic and enhanced H2 properties

  • Rapid Communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The production of one-dimensional nanorods (NRs) has been capturing decent curiosity due to the peculiar electronic, spintronic, and hydrogen evolution properties. Consequently, herein, diluted magnetic semiconducting ZnO:V (0, 1, and 2 at%) NRs have been prepared through a typical hydrothermal method. SEM images depicted that the prepared samples belonged to nanorods. V ion incorporation into the ZnO matrix was confirmed through XRD, Raman, and XPS studies. A trivial decreasing of optical band gap with the V doping was determined via Kubelka–Munk plots. The doping enhances the paramagnetic nature of ZnO as function of V doping. Importantly, these NRs were measured for H2 production through H2O splitting by the solar simulator. The ZnO:V (2 at%) portrayed the best H2 production capability (25,188 µmol h−1 g−1) in 5 h than other samples. The plausible reasons behind the improved H2 evolution could be discussed in detail. Till date, this is the first ever report on H2 evolution of ZnO:V nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability Statement

Data will be made available on request.

References

  1. J. Fang, Z. Zhou, M. Xiao, Z. Lou, Z. Wei, G. Shen, Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. Info Mat. 2, 291 (2020)

    Google Scholar 

  2. Y.J. Hong, R.K. Saroj, W.I. Park, G.C. Yi, One-dimensional semiconductor nanostructures grown on two-dimensional nanomaterials for flexible device applications. APL Mater. 9, 060907 (2021)

    Article  ADS  Google Scholar 

  3. P.V. Kamat, Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111(7), 2834–2860 (2007)

    Article  Google Scholar 

  4. M. Afzaal, M.A. Malik, P. O’Brien, Preparation of zinc containing materials. New J. Chem. 31, 2029–2040 (2007)

    Article  Google Scholar 

  5. P.M. Pataniya, D. Late, C.K. Sumesh, Photosensitive WS2/ZnO nano-heterostructure-based electrocatalysts for hydrogen evolution reaction. ACS Appl. Energy Mater. 4, 755 (2021)

    Article  Google Scholar 

  6. B. Hüner, M. Farsak, E. Telli, A new catalyst of AlCu@ZnO for hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 7381 (2018)

    Article  Google Scholar 

  7. V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83, 5447–5451 (1998)

    Article  ADS  Google Scholar 

  8. M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem. Mater. 14, 2812–2816 (2002)

    Article  Google Scholar 

  9. X. Qiu, L. Li, G. Li, Nature of the abnormal band gap narrowing in highly crystalline Zn1−xCoxO nanorods. Appl. Phys. Lett. 88, 114103 (2006)

    Article  ADS  Google Scholar 

  10. D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, H. Ohno, Magnetization vector manipulation by electric fields. Nature 455, 515 (2008)

    Article  ADS  Google Scholar 

  11. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Diet, Y. Ohno, K. Ohtani, Electric-field control of ferromagnetism. Nature 408, 944 (2000)

    Article  ADS  Google Scholar 

  12. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: A Spin-Based Electronics Vision for the Future. Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  13. B. Poornaprakash, P. Herie, K. Subramanyam, S.V. Prabhakar Vattikuti, K.C. Devarayapalli, S.H. Nam, Y.L. Kim, M.S.P. Reddy, M.G. Hahm, V.R.M. Reddy, Doping-induced photocatalytic activity and hydrogen evolution of ZnS: V nanoparticles. Ceram. Int. 47, 26438 (2021)

    Article  Google Scholar 

  14. B. Poornaprakash, U. Chalapathi, K. Subramanyam, S.V. Prabhakar Vattikuti, S.H. Park, Wurtzite phase Co-doped ZnO nanorods: morphological, structural, optical, magnetic, and enhanced photocatalytic characteristics. Ceram. Int. 46, 2931 (2020)

    Article  Google Scholar 

  15. A. Bouaine, R.J. Green, S. Colis, P. Bazylewski, G.S. Chang, A. Moewes, E.Z. Kurmaev, A. Dinia, Appearance of ferromagnetism in Co-doped CeO2 diluted magnetic semiconductors prepared by solid-state reaction. J. Phys. Chem. C 115, 1556 (2011)

    Article  Google Scholar 

  16. G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S.T. Pantelides, W. Zhou, R. Vajtai, P.M. Ajayan, Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 16(2), 1097–1103 (2016)

    Article  ADS  Google Scholar 

  17. Y. Wu, S. Zeng, Y. Dong, Y. Fu, H. Sun, S. Yin, X. Guoa, W. Qin, Hydrogen production from methanol aqueous solution by ZnO/Zn(OH)2 macrostructure photocatalysts. RSC Adv. 8, 11395 (2018)

    Article  ADS  Google Scholar 

  18. Y. Wang, H. Ping, T. Tan, W. Wang, P. Ma, H. Xie, Enhanced hydrogen evolution from water splitting based on ZnO nanosheet/CdS nanoparticle heterostructures. RSC Adv. 9, 28165 (2019)

    Article  ADS  Google Scholar 

  19. A. Machín, M. Cotto, J. Duconge, J.C. Arango, C. Morant, S. Pinilla, L.S. Vázquez, E. Resto, F. Márquez, Hydrogen production via water splitting using different Au@ZnO catalysts under UV–vis irradiation. J. Photochem. Photobiol. A 353, 385–394 (2018)

    Article  Google Scholar 

  20. D. Commandeur, G. Brown, E. Hills, J. Spencer, Q. Chen, Defect-rich ZnO nanorod arrays for efficient solar water splitting. ACS Appl. Nano Mater. 2, 1570–1578 (2019)

    Article  Google Scholar 

  21. I. Ahmad, E. Ahmed, M. Ahmad, M.S. Akhtar, M.A. Basharat, W.Q. Khan, M.I. Ghauri, A. Ali, M.F. Manzoor, The investigation of hydrogen evolution using Ca doped ZnO catalysts under visible light illumination. Mater. Sci. Semicond. Process. 105, 104748 (2020)

    Article  Google Scholar 

  22. M.F. Manzoor, E. Ahmed, M. Ahmad, I. Ahmad, A.M. Rana, A. Ali, M.I. Ghouri, M.S. Manzoor, M.T. Aziz, Enhanced photocatalytic activity of hydrogen evolution through Cu incorporated ZnO nano composites. Mater. Sci. Semicond. Process. 120, 105278 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation Korea funded by the Ministry of Science, ICT and Fusion Research (Grant No: 20201G1A1014959). This work was supported by the Technology development Program (S3038568) funded by the Ministry of SMEs and Startups (MSS, Korea). The study was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science (Grant Nos. 2022R1I1A1A01064248, 2021R1A4A2001658, and 2022R1A2C1003853). The NRF grants were funded by the Korean government (Grant Nos. 2020R1A2C1012439 and 2020R1A4A1019227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Lae Kim or Kwi-Il Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bathalavaram, P., Puneetha, P., Ramu, S. et al. Vanadium-doped ZnO nanorods: magnetic and enhanced H2 properties. Appl. Phys. A 128, 1084 (2022). https://doi.org/10.1007/s00339-022-06219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06219-z

Keywords

Navigation