Skip to main content
Log in

Parameter sensitivity evaluation of the laser cladding for Fe60 powder with different sulfur contents

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

During the laser cladding process, active elements will affect the direction and speed of the molten pool flow, impacting the solidification and cladding quality of the molten pool. It is significant to quantitatively evaluate the sensitivity of the influence for the cladding process parameters on cladding quality. In this paper, a three-dimensional numerical model of the laser cladding Fe60 powder was established. The effect of sulfur element on the surface tension, fluid flow, and heat transfer were calculated and analyzed, and the instantaneous evolution laws of the temperature and flow field during the cladding process were revealed. The response surface model was established based on the Box–Behnken Design (BBD) method, and the influence of different process parameters on the cladding process were analyzed. The sensitivity was analyzed by the Monte-Carlo method. The cladding profile was observed by the scanning electron microscope (SEM) to verify the validity of the model. Calculations show that sulfur changes the direction of Marangoni convection, forming a deeper molten pool. The laser power is more sensitive to the effect of the cladding temperature, and the powder feeding rate is more sensitive to the effect of the molten pool flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. L.Y. Chen, Y. Zhao, B.X. Song et al., Modeling and simulation of 3D geometry prediction and dynamic solidification behavior of Fe-based coatings by laser cladding. Opt. Laser Technol. 139, 107009 (2021). https://doi.org/10.1016/j.optlastec.2021.107009

    Article  Google Scholar 

  2. J.X. Zhao, G. Wang, X.Y. Wang et al., Multicomponent multiphase modeling of dissimilar laser cladding process with high-speed steel on medium carbon steel-ScienceDirect. Int. J. Heat Mass Transf. 148, 118990 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118990

    Article  Google Scholar 

  3. C.G. Li, C.M. Liu, S. Li et al., Numerical simulation of thermal evolution and solidification behavior of laser cladding AlSiTiNi composite coatings. Coatings 9(6), 391 (2019). https://doi.org/10.3390/coatings9060391

    Article  Google Scholar 

  4. L.Y. Chen, T.B. Yu, P.F. Xu et al., In-situ NbC reinforced Fe-based coating by laser cladding: Simulation and experiment. Surf. Coat. Technol. 412, 127027 (2021). https://doi.org/10.1016/j.surfcoat.2021.127027

    Article  Google Scholar 

  5. Z.P. Wu, T. Li, Q. Li et al., Process optimization of laser cladding Ni60A alloy coating in remanufacturing. Opt. Laser Technol. 120, 105718 (2019). https://doi.org/10.1016/j.optlastec.2019.105718

    Article  Google Scholar 

  6. J.T. Yu, W.L. Sun, H.B. Huang et al., Crack sensitivity control of nickel-based laser coating based on Genetic Algorithm and Neural Network. Coatings 9(11), 728 (2019). https://doi.org/10.3390/coatings9110728

    Article  Google Scholar 

  7. A. Marchand, J.H. Weijs, J.H. Snoeijer et al., Why is surface tension a force parallel to the interface? Am. J. Phys. 79(10), 999–1008 (2012). https://doi.org/10.1119/1.3619866

    Article  ADS  Google Scholar 

  8. S. Kou, Y.H. Wang, Three-dimensional convection in laser melted pools[J]. Metall. Trans. A 17(12), 2265–2270 (1986). https://doi.org/10.1007/BF02645924

    Article  Google Scholar 

  9. A. Kumar, S. Roy, Effect of three-dimensional melt pool convection on process characteristics during laser cladding. Comput. Mater. Sci. 46(2), 495–506 (2009). https://doi.org/10.1016/j.commatsci.2009.04.002

    Article  Google Scholar 

  10. L.C. Zheng, C.R. Jiao, Y.H. Lin et al., Marangoni convection heat and mass transport of power-law fluid in porous medium with heat generation and chemical reaction. Heat Transf. Eng. 38(5–8), 641–652 (2016). https://doi.org/10.1080/01457632.2016.1200384

    Article  ADS  Google Scholar 

  11. A. Kidess, S. Kenjereš, C.R. Kleijn, The influence of surfactants on thermocapillary flow instabilities in low Prandtl melting pools. Phys. Fluids 28(6), 93–127 (2016). https://doi.org/10.1146/annurev.fluid.33.1.93

    Article  Google Scholar 

  12. T.J. Lienert, P. Burgardt, K.L. Harada et al., Weld bead center line shift during laser welding of austenitic stainless steels with different sulfur content. Scr. Mater. 71, 37–40 (2014). https://doi.org/10.1016/j.scriptamat.2013.09.029

    Article  Google Scholar 

  13. J.H. Yang, W. Aiyiti, H.F. Jiang et al., Evolution of molten pool morphology and prediction of inclined cladding layer morphology. Opt. Laser Technol. 142, 107164 (2021). https://doi.org/10.1016/j.optlastec.2021.107164

    Article  Google Scholar 

  14. G.F. Lian, M.P. Yao, Z. Yang et al., Analysis and prediction on geometric characteristics of multi-track overlapping laser cladding. Int. J. Adv. Manuf. Technol. 97(9), 2397 (2018). https://doi.org/10.1007/s00170-018-2107-6

    Article  Google Scholar 

  15. P. Wen, Z.H. Feng, S.Q. Zheng, Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel. Opt. Laser Technol. 65, 180–188 (2015). https://doi.org/10.1016/j.optlastec.2014.07.017

    Article  ADS  Google Scholar 

  16. F. Mazzucato, A. Aversa, R. Doglione et al., Influence of process parameters and deposition strategy on laser metal deposition of 316l powder. Met. Open Access Metall. J. 9(11), 1160 (2019). https://doi.org/10.3390/met9111160

    Article  Google Scholar 

  17. Y. Zhao, C. Guan, L.Y. Chen et al., Effect of process parameters on the cladding track geometry fabricated by laser cladding. Opt. Int. J. Light Electron Opt. 223, 165447 (2020). https://doi.org/10.1016/j.ijleo.2020.165447

    Article  Google Scholar 

  18. A.A. Ferreira, R. Darabi, J.P. Sousa et al., Optimization of Direct Laser Deposition of a Martensitic Steel Powder (Metco 42C) on 42CrMo4 Steel. Met. Open Access Metall. J. 11(4), 672 (2021). https://doi.org/10.3390/met11040672

    Article  Google Scholar 

  19. C. Li, X. Han, D.C. Zhang et al., Quantitative analysis and experimental study of the influence of process parameters on the evolution of laser cladding. J. Adhes. Sci.Technol. (2021). https://doi.org/10.1080/01694243.2021.1991142

    Article  Google Scholar 

  20. D. Grange, A. Queva, G. Guillemot et al., Effect of processing parameters during the laser beam melting of Inconel 738: Comparison between simulated and experimental melt pool shape. J. Mater. Process. Technol. 289, 116897 (2021). https://doi.org/10.1016/j.jmatprotec.2020.116897

    Article  Google Scholar 

  21. S.Y. Wen, Y.C. Shin, Modeling of transport phenomena in direct laser deposition of metal matrix composite. Int. J. Heat Mass Transf. 54(25–26), 5319–5326 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.011

    Article  MATH  Google Scholar 

  22. S. Morville, M. Carin, P. Peyre et al., 2D longitudinal modeling of heat transfer and fluid flow during multilayered direct laser metal deposition process. J. Laser Appl. 24(3), 1–9 (2012). https://doi.org/10.2351/1.4726445

    Article  Google Scholar 

  23. Y.C. Jiang, Y.H. Cheng, X.C. Zhang et al., Simulation and experimental investigations on the effect of Marangoni convection on thermal field during laser cladding process. Optik 203, 164044 (2020). https://doi.org/10.1016/j.ijleo.2019.164044

    Article  ADS  Google Scholar 

  24. M. Do-Quang, G. Amberg, C.O. Pettersson, Modeling of the Adsorption Kinetics and the Convection of Surfactants in a Weld Pool. J. Heat Transf. 130(9), 61–71 (2008). https://doi.org/10.1115/1.2946476

    Article  Google Scholar 

  25. X. Han, D.C. Zhang, C. Li et al., Study on a multifield coupling mechanism and a numerical simulation method of a pulsed laser deposition process from a disk laser. Appl. Phys. A 127, 17 (2021). https://doi.org/10.1007/s00339-020-04180-3

    Article  ADS  Google Scholar 

  26. J. Song, Y.X. Chew, G.J. Bi et al., Numerical and experimental study of laser aided additive manufacturing for melt-pool profile and grain orientation analysis - ScienceDirect. Mater. Des. 137, 286–297 (2018). https://doi.org/10.1016/j.matdes.2017.10.033

    Article  Google Scholar 

  27. Z.T. Gan, L. Hao, S.X. Li et al., Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron. Int. J. Heat Mass Transf. 111, 709–722 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.055

    Article  Google Scholar 

  28. Z.T. Gan, Y. Gang, X.L. He et al., Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel. Int. J. Heat Mass Transf. 104, 28–38 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.049

    Article  Google Scholar 

  29. H.C. Tian, X.D. Chen, Z.H. Yan et al., Finite-element simulation of melt pool geometry and dilution ratio during laser cladding. Appl. Phys. A 125, 485 (2019). https://doi.org/10.1007/s00339-019-2772-9

    Article  ADS  Google Scholar 

  30. P. Sahoo, T. Debroy, M.J. Mcnallan, Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy. Metall. Trans. B 19, 483–491 (1998). https://doi.org/10.1007/BF02657748

    Article  Google Scholar 

  31. N.A. Nariman, K. Hamdia, A.M. Ramadan et al., Optimum design of flexural strength and stiffness for reinforced concrete beams using machine learning. Appl. Sci. 11(18), 8762 (2021). https://doi.org/10.3390/app11188762

    Article  Google Scholar 

  32. G.R. Meng, L.D. Zhu, J.D. Zhang et al., Statistical analysis and multi-objective process optimization of laser cladding TiC-Inconel718 composite coating. Opt. Int. J. Light Electron Opt. 240, 166828 (2021). https://doi.org/10.1016/j.ijleo.2021.166828

    Article  Google Scholar 

  33. N. Vu-Bac, X. Zhuang, T. Rabczuk, Uncertainty Quantification for mechanical properties of polyethylene based on fully atomistic model. Materials 12(21), 3613 (2019). https://doi.org/10.3390/ma12213613

    Article  ADS  Google Scholar 

  34. D.W. Zhao, A. Osipov, A. Bezmelnitsyn et al., Statistical modeling and optimization of the resistance welding process with simultaneous expulsion magnitude consideration for high-strength low alloy steel. Int. J. Adv. Manuf. Technol. 113, 1173–1189 (2021). https://doi.org/10.1007/s00170-021-06696-1

    Article  Google Scholar 

  35. N. Vu-Bac, T. Lahmer, X. Zhuang et al., A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv. Eng. Softw. 100, 19–31 (2016). https://doi.org/10.1016/j.advengsoft.2016.06.005

    Article  Google Scholar 

  36. T.M. Rodgers, J.A. Mitchell, V. Tikare, A Monte Carlo model for 3D grain evolution during welding. Model. Simul. Mater. Sci. Eng. 25, 064006 (2017). https://doi.org/10.1088/1361-651X/aa7f20

    Article  ADS  Google Scholar 

  37. N. Vu-Bac, T. Lahmer, Y. Zhang et al., Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Compos. Part B 59, 80–95 (2014). https://doi.org/10.1016/j.compositesb.2013.11.014

    Article  Google Scholar 

  38. N. Vu-Bac, R. Rafiee, X. Zhuang et al., Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Compos. Part B 68, 446–464 (2015). https://doi.org/10.1016/j.compositesb.2014.09.008

    Article  Google Scholar 

  39. N. Vu-Bac, M. Silani, T. Lahmer et al., A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Comput. Mater. Sci. 96, 520–535 (2015). https://doi.org/10.1016/j.commatsci.2014.04.066

    Article  Google Scholar 

Download references

Funding

This work was supported by Innovation Talent Support Plan Program of Higher Education Institutions of Liaoning Province (20201020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Li.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical approval

All analyses were based on previously published studies; thus, no ethical approval and patient consent are required.

Consent to participate and publications

All authors agree with the participation and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, T., Li, C., Deng, S. et al. Parameter sensitivity evaluation of the laser cladding for Fe60 powder with different sulfur contents. Appl. Phys. A 128, 1039 (2022). https://doi.org/10.1007/s00339-022-06175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06175-8

Keywords

Navigation