Skip to main content

Advertisement

Log in

Highly efficient hydrogen production performance of g-C3N4 quantum dot-sensitized WO3/Ni–ZnIn2S4 nanosheets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metal sulfide semiconductor photocatalysts have been widely used in photocatalytic hydrogen evolution reactions due to their good light absorption properties and high photostability. However, the metal sulfide photogenerated carriers of these catalysts are susceptible to recombination, which reduces the rate of hydrogen production. In this study, ZnIn2S4 was doped with the transition metal ion Ni2+ to regulate and control the absorption sidebands of ZnIn2S4, improve the catalyst's responsiveness to visible light, and hence increase the hydrogen production rate. Ni–ZnIn2S4 catalysts with varying doping ratios were prepared, and the optimal doping ratio of 1.0% was selected for further experiments. A WO3/Ni–ZnIn2S4 composite photocatalyst was synthesized using the hydrothermal method to produce a heterojunction with a constant doping ratio of 1.0%. Loading WO3 on this catalyst enhanced the light absorption intensity, improved the photogenerated carrier separation efficiency, and significantly increased the hydrogen evolution rate of the catalyst by 2.1 times. Finally, an g-C3N4 QDs/WO3/Ni–ZnIn2S4 catalyst was prepared by loading quantum dots for sensitization. The g-C3N4 quantum dots served as a sensitizing role, greatly improved the light absorption intensity, and further improved the hydrogen evolution rate of the catalyst, which was increased to 9.29 mmol/(g·h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. W. Cui, P. Chen, L. Chen, J. Li, F.J.J.O.P.E. Dong, Alkali/alkaline-earth metal intercalated g-C3N4 induced charge redistribution and optimized photocatalysis: status and challenges. J. Phys. Energy 3, 032008 (2021)

    Article  ADS  Google Scholar 

  2. X.J.E. Wang, Brief Review of photocatalysis and photoresponse properties of ZnO–Graphene nanocomposites. Energies 14(19), 6403–6410 (2021)

    Article  Google Scholar 

  3. B.S. Richards, D. Hudry, D. Busko, A. Turshatov, I.A.J.C.R. Howard, Photon upconversion for photovoltaics and photocatalysis: a critical review: focus review. Chem. Rev. 121(15), 9165–9195 (2021)

    Article  Google Scholar 

  4. P.J.C.C. Tschakert, 1.5°C or 2°C: a conduit’s view from the science-policy interface at COP20 in Lima, Peru. Clim. Chang. Responses 2, 3 (2015)

    Article  Google Scholar 

  5. I.B. Krylov, E.R. Lopat’Eva, I.R. Subbotina, G.I. Nikishin, A.O.J.C.J.O.C. Terent’Ev, Mixed hetero-/homogeneous TiO2/N-hydroxyimide photocatalysis in visible-light-induced controllable benzylic oxidation by molecular oxygen. Chin. J. Catal. 42, 1700–1711 (2021)

    Article  Google Scholar 

  6. Q. Zhu, K. Zhang, D. Li, N. Li, C.J.C.E.J. Wang, Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: a review. Chem. Eng. J. 426(15), 131681 (2021)

    Article  Google Scholar 

  7. Y. Li, H. Wang, X. Zhang, S. Wang, S. Jin, X. Xu, W. Liu, Z. Zhao, Y.J.A.C. Xie, Exciton mediated energy transfer in heterojunction enables infrared light photocatalysis. Angew. Chem. 23(60), 12891–12896 (2021)

    Article  Google Scholar 

  8. W. Zhao, J. Li, T. She, S. Ma, D.J.J.O.H.M. Leung, Study on the photocatalysis mechanism of the Z-scheme cobalt oxide nanocubes/carbon nitride nanosheets heterojunction photocatalyst with high photocatalytic performances. J. Hazard. Mater. 402(15), 123839 (2021)

    Article  Google Scholar 

  9. F. Min, Z. Wei, Z. Yu, Y. Xiao, S. Guo, R. Song, J.J.D.T. Li, Construction of a hierarchical ZnIn2S4/g-C3N4 heterojunction for the enhanced photocatalytic degradation of tetracycline. Dalton Trans. 51, 2323–2330 (2022)

    Article  Google Scholar 

  10. C. Han, G. Han, S. Yao, L. Yuan, X. Liu, Z. Cao, A. Mannodi-Kanakkithodi, Y.S.J.A. Science, Defective ultrathin ZnIn2S4 for photoreductive deuteration of carbonyls using D2O as the deuterium source. Adv. Sci. 9(3), 2103408 (2021)

    Article  Google Scholar 

  11. Z. Zhu, X. Li, Y. Qu, F. Zhou, Y.J. Wu, A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 14, 81–89 (2021)

    Article  ADS  Google Scholar 

  12. Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen, C.J.C.C. Li, Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem. Commun. 17, 2142–2143 (2003)

    Article  Google Scholar 

  13. S. Shen, Z. Liang, Z. Zhou, L.J.T.J.O.P.C.C. Guo, Enhanced photocatalytic hydrogen evolution over Cu-Doped ZnIn2S4 under visible light irradiation. J. Phys. Chem. C 112(41), 16148–16155 (2008)

    Article  Google Scholar 

  14. Y. Kang, S. Xu, K. Han, Y.J. Kong, X.J.N.L. Gong, Ge0.95Sn0.05 gate-all-around p-channel metal-oxide-semiconductor field-effect transistors with Sub-3 nm nanowire width. Nano Lett. 21(13), 5555–5563 (2021)

    Article  ADS  Google Scholar 

  15. V. Manikandan, R. Marnadu, J. Chandrasekaran, S. Vigneselvan, R.S. Mane, C.E. Banks, A.J.J.O.M.C.C. Mirzaei, Inherent characteristics of ultra-photosensitive Al/Cu CeO2/p-Si metal oxide semiconductor diodes. J. Mater. Chem. C 10, 1445–1457 (2022)

    Article  Google Scholar 

  16. S. Sikdar, B.N. Chowdhury, S.J.P.R.A. Chattopadhyay, Design and modeling of high-efficiency Ga As nanowire metal-oxide-semiconductor solar cells beyond the shockley-queisser limit: an NEGF approach. Phys. Rev. Appl. 15, 024055 (2021)

    Article  ADS  Google Scholar 

  17. L. Xiao, G. Li, Z. Yang, K. Chen, R. Zhou, H. Liao, Q. Xu, J.J.A.F.M. Xu, Engineering of amorphous PtOx interface on Pt/WO3 nanosheets for ethanol oxidation electrocatalysis. Adv. Funct. Mater. 31(28), 210982 (2021)

    Article  Google Scholar 

  18. Y. Yang, Z. Chai, X. Qin, Z. Zhang, D.J.A.C. Xu, Lightreduced redox looping of a rhodium/ CexWO3 photocatalyst for highly active and robust dry reforming of methane. Angew. Chem. 134(21), e202200567 (2022)

    Article  Google Scholar 

  19. Y. Liu, G.-J. Zhao, J.-X. Zhang, F.-Q. Bai, H.-X. Zhang, First-principles investigation on the interfacial interaction and electronic structure of BiVO4/WO3 heterostructure semiconductor material. Appl. Surf. Sci. 549(30), 149309 (2021)

    Article  Google Scholar 

  20. K. Song, F. Xiao, L. Zhang, F. Yue, X. Liang, J. Wang, X. Su, W18O49 nanowires grown on g-C3N4 sheets with enhanced photocatalytic hydrogen evolution activity under visible light. J. Mol. Catal. A Chem. 418–419, 95–102 (2016)

    Article  Google Scholar 

  21. H. Zhang, W. Zhou, Y. Yang, C. Cheng, 3D WO3/BiVO4 /cobalt phosphate composites inverse opal photoanode for efficient photoelectrochemical water splitting. Small 13(16), 1603840 (2017)

    Article  Google Scholar 

  22. H. Wang, X. Yuan, H. Wang, X. Chen, Z. Wu, L. Jiang, W. Xiong, G. Zeng, Facile synthesis of Sb2S3 /ultrathin g-C3N4 sheets heterostructures embedded with g-C 3 N 4 quantum dots with enhanced NIR-light photocatalytic performance. Appl. Catal. B 193, 36–46 (2016)

    Article  Google Scholar 

  23. M. Xu, L. Han, S. Dong, Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 23(5), 12533–12540 (2013)

    Article  Google Scholar 

  24. Y.J. Yuan, Y. Yang, Z. Li, D. Chen, S. Wu, G. Fang, W. Bai, M. Ding, L.X. Yang, D.P. Cao, Z.T. Yu, Z.G. Zou, Promoting charge separation in g-C3N4/graphene/MoS2 photocatalysts by two-dimensional nanojunction for enhanced photocatalytic H2 production. Appl. Energy Mater. 4(1), 1400–1407 (2018)

    Article  Google Scholar 

  25. Y. Hong, J. Yang, W.M. Choi, J. Wang, J.J.A.A.E.M. Xu, B-Doped g-C3N4 quantum dots-modified Ni(OH)2 nanoflowers as an efficient and stable electrode for supercapacitors. Appl Energy Mater. 4(2), 1496–1504 (2021)

    Article  Google Scholar 

  26. B.X. Zhou, S.S. Ding, Y. Wang, X.R. Wang, W.Q. Huang, K. Li, G.F.J.N. Huang, Type-II/type-II band alignment to boost spatial charge separation: a case study of g-C3N4 quantum dots/a-TiO2/r-TiO2 for highly efficient photocatalytic hydrogen and oxygen evolution. Nanoscale 12, 6037–6046 (2020)

    Article  Google Scholar 

  27. C. Xu, D. Li, X. Liu, R. Ma, N. Sakai, Y. Yang, S. Lin, J. Yang, H. Pan, J. Huang, T. Sasaki, Direct Z-scheme construction of g-C3N4 quantum dots/TiO2 nanoflakes for efficient photocatalysis. Chem. Eng. J. 430(15), 132861 (2022)

    Article  Google Scholar 

  28. J. Chen, S.J. Wu, W.J. Cui, Y.H. Guo, T.W. Wang, Z.W. Yao, Y. Shi, H. Zhao, J. Liu, Z.Y. Hu, Y. Li, Nickel clusters accelerating hierarchical zinc indium sulfide nanoflowers for unprecedented visible-light hydrogen production. J. Colloid. Interface Sci. 608, 504–512 (2022)

    Article  ADS  Google Scholar 

  29. Y.J. Yuan, J.R. Tu, Z.J. Ye, D.Q. Chen, B. Hu, Y.W. Huang, T.T. Chen, D.P. Cao, Z.T. Yu, Z.G. Zou, MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: a highly efficient photocatalyst for solar hydrogen generation. Appl. Catal. B 188, 13–22 (2016)

    Article  Google Scholar 

  30. H. Li, Y. Li, X. Wang, B. Hou, 3D ZnIn2S4 nanosheets/TiO2 nanotubes as photoanodes for photocathodic protection of Q235 CS with high efficiency under visible light. J. Alloy. Compd. 771, 892–899 (2019)

    Article  Google Scholar 

  31. S. Cao, Yu. Jiaguo, S. Wageh, A.A. Al-Ghamdi, M. Mousavi, J.B. Ghasemid, Xu. Feiyan, H2-production and electron-transfer mechanism of a noble-metal-free WO3@ZnIn2S4 S-scheme heterojunction photocatalyst. J. Mater. Chem. A 10, 17174–17184 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by Open subject of Key Laboratory of Materials-Oriented Chemical Engineering at Universities of Education Department of Xinjiang Uygur Autonomous Region (20201001), Cross projects of Nanyang Institute of Technology (330078), Doctoral research startup fund of Nanyang Institute of Technology (510140), Science and technology project of Henan Province (182102210460) and Open subject of Henan Key Laboratory of microbial fermentation (HIMFT20210204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keliang Wu or Bingke Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Yao, C., Wu, P. et al. Highly efficient hydrogen production performance of g-C3N4 quantum dot-sensitized WO3/Ni–ZnIn2S4 nanosheets. Appl. Phys. A 128, 903 (2022). https://doi.org/10.1007/s00339-022-06055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06055-1

Keywords

Navigation