Skip to main content
Log in

Large-scale facile green synthesis of porous silver nanocubes on monolithic activated carbon for room-temperature catalytic oxidation of formaldehyde

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Porous silver nanocubes supported on monolithic activated carbon (porous Ag/MAC) have been prepared by a novel two-step, chemical reductant-free, facile and selective  process. The Ag nanocubes have been characterized using the SEM, XRD and the inner structures are revealed by the FIB-SEM technique. The growth mechanism of porous silver nanocubes on MAC is proposed based on the galvanic cell mechanism and confirmed by the characteristics of the carbon and the products at different growth stages. The porous Ag/MAC exhibits a better catalytic oxidation performance for formaldehyde removal at low temperature than bare MAC, achieving 83% formaldehyde removal with the initial concentration of 1.5 mg m−3 at 22 °C for 3 h. This better performance is attributed to the synergistic effect of adsorption, higher surface area and catalytic properties of porous silver nanocubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Ding, A. Wang, G. Li, Z. Liu, W. Zhao, C. Su et al., Porous Pt-Ni-P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 134, 5730–5733 (2012)

    Google Scholar 

  2. H. Wang, S. Liu, H. Zhang, S. Yin, Y. Xu, X. Li et al., Multinary PtPdNiP truncated octahedral mesoporous nanocages for enhanced methanol oxidation electrocatalysis. New J. Chem. 44, 15492–15497 (2020)

    Google Scholar 

  3. C. Zhan, Y. Huang, G. Lin, S. Huang, F. Zeng, S. Wu, A gold nanocage/cluster hybrid structure for whole-body multispectral optoacoustic tomography imaging, EGFR inhibitor delivery, and photothermal therapy. Small 15, 1900309 (2019)

    Google Scholar 

  4. G.D. Moon, S. Choi, X. Cai, W. Li, E.C. Cho, U. Jeong et al., A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J. Am. Chem. Soc. 133, 4762–4765 (2011)

    Google Scholar 

  5. S. Shukla, A. Priscilla, M. Banerjee, R.R. Bhonde, J. Ghatak, P.V. Satyam et al., Porous gold nanospheres by controlled transmetalation reaction: a novel material for application in cell imaging. Chem. Mater. 17, 5000–5005 (2005)

    Google Scholar 

  6. S.E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, Y. Xia, Gold nanocages for biomedical applications. Adv. Mater. 19, 3177–3184 (2007)

    Google Scholar 

  7. Z. Qin, Y. Zheng, T. Du, Y. Wang, H. Gao, J. Quan et al., Cysteamine: a key to trigger aggregation-induced NIR-II photothermal effect and silver release booming of gold-silver nanocages for synergetic treatment of multidrug-resistant bacteria infection. Chem. Eng. J. 414, 128779 (2021)

    Google Scholar 

  8. S. Dong, S. Yang, C. Tang, Rapid synthesis of size-controlled gold nanoparticles by complex intramolecular photoreduction. Chem. Res. Chin. Univ. 23, 500–504 (2007)

    Google Scholar 

  9. S. Jeong, S.Y. Lee, M. Kim, J.H. Kim, Multifunctional hollow porous Au/Pt nanoshells for simultaneous surface-enhanced Raman scattering and catalysis. Appl. Surf. Sci. 543, 148831 (2021)

    Google Scholar 

  10. T. Zhang, F. Zhou, L. Hang, Y. Sun, D. Liu, H. Li et al., Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties. J. Mater. Chem. C 5, 11039–11045 (2017)

    Google Scholar 

  11. J.H. Yang, L.M. Qi, C.H. Lu, J.M. Ma, H.M. Cheng, Morphosynthesis of rhombododecahedral silver cages by self-assembly coupled with precursor crystal templating. Angew Chem. Int. Edit. 44, 598–603 (2005)

    Google Scholar 

  12. X. Luo, S. Lian, L. Wang, S. Yang, Z. Yang, B. Ding et al., Volume shrinkage induced formation of porous Ag sub-microcubes via solid-liquid reaction for SERS. CrystEngComm 15, 2588–2591 (2013)

    Google Scholar 

  13. Y. Huang, D. Lin, M. Li, D. Yin, S. Wang, J. Wang, Ag@Au Core-Shell porous nanocages with outstanding SERS activity for highly sensitive SERS immunoassay. Sensors 19, 1554 (2019)

    Google Scholar 

  14. E. Gonzalez, J. Arbiol, V.F. Puntes, Carving at the nanoscale: Sequential galvanic exchange and kirkendall growth at room temperature. Science 334, 1377–1380 (2011)

    Google Scholar 

  15. S. Jeong, M. Kim, Y. Jo, N. Kim, D. Kang, S.Y. Lee et al., Hollow porous gold nanoshells with controlled nanojunctions for highly tunable plasmon resonances and intense field enhancements for surface-enhanced Raman scattering. ACS Appl. Mater. Inter. 11, 44458–44465 (2019)

    Google Scholar 

  16. X. Lu, L. Au, J. McLellan, Z. Li, M. Marquez, Y. Xia, Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 7, 1764–1769 (2007)

    Google Scholar 

  17. J. Wang, X. Zhang, Z. Wang, L. Wang, W. Xing, X. Liu, One-step and rapid synthesis of “clean” and monodisperse dendritic Pt nanoparticles and their high performance toward methanol oxidation and p-nitrophenol reduction. Nanoscale 4, 1549–1552 (2012)

    Google Scholar 

  18. B. Viswanath, S. Patra, N. Munichandraiah, N. Ravishankar, Nanoporous Pt with high surface area by reaction-limited aggregation of nanoparticles. Langmuir 25, 3115–3121 (2009)

    Google Scholar 

  19. G. Fu, K. Wu, J. Lin, Y. Tang, Y. Chen, Y. Zhou et al., One-Pot water-based synthesis of Pt-Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J. Phys. Chem. C 117, 9826–9834 (2013)

    Google Scholar 

  20. S.L.W. Tan, S. Chadha, Y. Liu, E. Gabasova, D. Perera, K. Ahmed et al., A class of environmental and endogenous toxins induces BRCA2 haploinsufficiency and genome instability. Cell 169, 1105–1118 (2017)

    Google Scholar 

  21. G. Yu, Y. Zhang, S. Liu, L. Fan, Y. Yang, Y. Huang et al., Small interfering RNA targeting of peroxiredoxin II gene enhances formaldehyde-induced toxicity in bone marrow cells isolated from BALB/c mice. Ecotox. Environ. Safe. 181, 89–95 (2019)

    Google Scholar 

  22. C. Su, K. Liu, Y. Guo, H. Li, Z. Zeng, L. Li, The role of pore structure and nitrogen surface groups in the adsorption behavior of formaldehyde on resin-based carbons. Surf. Interface Anal. 53, 330–339 (2021)

    Google Scholar 

  23. C. Na, M. Yoo, D.C.W. Tsang, H.W. Kim, K. Kim, High-performance materials for effective sorptive removal of formaldehyde in air. J. Hazard. Mater. 366, 452–465 (2019)

    Google Scholar 

  24. J. Bellat, I. Bezverkhyy, G. Weber, S. Royer, R. Averlant, J. Giraudon et al., Capture of formaldehyde by adsorption on nanoporous materials. J. Hazard. Mater. 300, 711–717 (2015)

    Google Scholar 

  25. M. Zhu, Y. Muhammad, P. Hu, B. Wang, Y. Wu, X. Sun et al., Enhanced interfacial contact of dopamine bridged melamine-graphene/TiO2 nano-capsules for efficient photocatalytic degradation of gaseous formaldehyde. Appl. Catal. B. 232, 182–193 (2018)

    Google Scholar 

  26. J. Yu, S. Wang, J. Low, W. Xiao, Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15, 16883–16890 (2013)

    Google Scholar 

  27. J. Li, W. Cui, P. Chen, X. Dong, Y. Chu, J. Sheng et al., Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization. Appl. Catal. B. 260, 118130 (2020)

    Google Scholar 

  28. Z. Shayegan, C. Lee, F. Haghighat, TiO2 photocatalyst for removal of volatile organic compounds in gas phase-a review. Chem. Eng. J. 334, 2408–2439 (2018)

    Google Scholar 

  29. X. Zhu, X. Gao, R. Qin, Y. Zeng, R. Qu, C. Zheng et al., Plasma-catalytic removal of formaldehyde over Cu–Ce catalysts in a dielectric barrier discharge reactor. Appl. Catal. B. 170171, 293–300 (2015)

    Google Scholar 

  30. X. He, Y. Zeng, J. Chen, F. Wang, Y. Fu, F. Feng et al., Role of O3 in the removal of HCHO using a DC streamer plasma. J. Phys. D: Appl. Phys. 52, 465203 (2019)

    Google Scholar 

  31. P.J. Asilevi, C.W. Yi, J. Li, M.I. Nawaz, H.J. Wang, L. Yin et al., Decomposition of formaldehyde in strong ionization non-thermal plasma at atmospheric pressure. Int. J. Environ. Sci. Technol. 17, 765–776 (2020)

    Google Scholar 

  32. B. Chen, X. Zhu, M. Crocker, Y. Wang, C. Shi, FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature. Appl. Catal. B. 154, 73–81 (2014)

    Google Scholar 

  33. L. Zhang, Y. Xie, Y. Jiang, Y. Li, C. Wang, S. Han et al., Mn-promoted Ag supported on pure siliceous Beta zeolite (Ag/Beta-Si) for catalytic combustion of formaldehyde. Appl. Catal. B. 268, 118461 (2020)

    Google Scholar 

  34. C. Wang, Y. Li, C. Zhang, X. Chen, C. Liu, W. Weng et al., A simple strategy to improve Pd dispersion and enhance Pd/TiO2 catalytic activity for formaldehyde oxidation: The roles of surface defects. Appl. Catal. B. 282, 119540 (2021)

    Google Scholar 

  35. C. Wang, Y. Li, L. Zheng, C. Zhang, Y. Wang, W. Shan et al., A nonoxide catalyst system study: alkali metal-promoted Pt/AC catalyst for formaldehyde oxidation at ambient temperature. Acs Catal. 11, 456–465 (2021)

    Google Scholar 

  36. Z. Fan, J. Shi, Z. Zhang, M. Chen, W. Shangguan, Promotion effect of potassium carbonate on catalytic activity of Co3O4 for formaldehyde removal. J. Chem. Technol. Biot. 93, 3562–3568 (2018)

    Google Scholar 

  37. S. Zhang, H. Wang, H. Si, X. Jia, Z. Wang, Q. Li et al., Novel core-shell (epsilon-MnO2/CeO2)@CeO2 composite catalyst with a synergistic effect for efficient formaldehyde oxidation. Acs. Appl. Mater. Inter. 12, 40285–40295 (2020)

    Google Scholar 

  38. P. Liu, G. Wei, H. He, X. Liang, H. Chen, Y. Xi et al., The catalytic oxidation of formaldehyde over palygorskite-supported copper and manganese oxides: catalytic deactivation and regeneration. Appl. Surf Sci. 464, 287–293 (2019)

    Google Scholar 

  39. S. Zhang, L. Zhao, Y. Wu, Y. Pang, X. Yue, B. Li et al., Controllable synthesis of hierarchical nanoporous epsilon-MnO2 crystals for the highly effective oxidation removal of formaldehyde. CrystEngComm 21, 3863–3872 (2019)

    Google Scholar 

  40. X. Chen, H. Wang, M. Chen, X. Qin, H. He, C. Zhang, Co-function mechanism of multiple active sites over Ag/TiO2 for formaldehyde oxidation. Appl. Catal. B. 282, 119543 (2021)

    Google Scholar 

  41. D. Chen, Z. Qu, S. Shen, X. Li, Y. Shi, Y. Wang et al., Comparative studies of silver based catalysts supported on different supports for the oxidation of formaldehyde. Catal. Today 175, 338–345 (2011)

    Google Scholar 

  42. J. Zhang, Y. Li, Y. Zhang, M. Chen, L. Wang, C. Zhang et al., Effect of support on the activity of Ag-based catalysts for formaldehyde oxidation. Sci. Rep. 5, 12950 (2015)

    Google Scholar 

  43. W.D.P. Rengga, A. Chafidz, M. Sudibandriyo, M. Nasikin, A.E. Abasaeed, Silver nanoparticles deposited on bamboo-based activated carbon for removal of formaldehyde. J. Environ. Chem. Eng. 5, 1657–1665 (2017)

    Google Scholar 

  44. L. Ma, C. Liu, Q. Guan, W. Li, Relationship between Pt particle size and catalyst activity for catalytic oxidation of ultrahigh-concentration formaldehyde. Appl. Organomet. Chem. (2019). https://doi.org/10.1002/aoc.5217

    Article  Google Scholar 

  45. W. Bao, H. Chen, H. Wang, R. Zhang, Y. Wei, L. Zheng, Pt nanoparticles supported on N/Ce-Doped activated carbon for the catalytic oxidation of formaldehyde at room temperature. ACS Appl. Nano Mater. 3, 2614–2624 (2020)

    Google Scholar 

  46. F. Wang, Y. Lai, B. Zhao, X. Hu, D. Zhang, K. Hu, Tunable growth of nanodendritic silver by galvanic-cell mechanism on formed activated carbon. Chem. Commun. 46, 3782–3784 (2010)

    Google Scholar 

  47. H. Zhao, F. Wang, Y. Ning, B. Zhao, F. Yin, Y. Lai et al., Green “planting” nanostructured single crystal silver. Sci. Rep. 3, 1511 (2013)

    Google Scholar 

  48. F. Wang, H. Zhao, Y. Lai, S. Liu, B. Zhao, Y. Ning et al., Morphosynthesis of cubic silver cages on monolithic activated carbon. Phys. Chem. Chem. Phys. 15, 18367–18370 (2013)

    Google Scholar 

  49. E.V. Formo, W. Fu, A.J. Rondinone, S. Dai, Utilizing AgCl: Ag and AgCl mesostructures as solid precursors in the formation of highly textured silver nanomaterials via electron-beam induced decomposition. RSC Adv. 2, 9359–9361 (2012)

    Google Scholar 

  50. F. Cui, M. Zhai, K. Wu, N. Yu, Z. Wang, Conversion of AgCl nanocubes to Ag/AgCl nanohybrids via solid-liquid reaction for surface-enhanced Raman scattering detection. Micro Nano Lett. 9, 297–301 (2014)

    Google Scholar 

  51. X. Song, P. Gunawan, R. Jiang, S.S.J. Leong, K. Wang, R. Xu, Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. J. Hazard. Mater. 194, 162–168 (2011)

    Google Scholar 

  52. M.A. Islam, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotox. Environ. Safe. 138, 279–285 (2017)

    Google Scholar 

  53. Z. Feng, N. Chen, C. Feng, C. Fan, H. Wang, Y. Deng et al., Roles of functional groups and irons on bromate removal by FeCl3 modified porous carbon. Appl. Surf. Sci. 488, 681–687 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2021YFB2800700, No. 2021YFB2800703), the Chinese Academy of Sciences, the Science and Technology Commission of Shanghai Municipality (STCSM) (Grant 17230732700) and the Innovate UK (Grant 104013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binyuan Zhao or Weiping Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Yang, H., Ning, Y. et al. Large-scale facile green synthesis of porous silver nanocubes on monolithic activated carbon for room-temperature catalytic oxidation of formaldehyde. Appl. Phys. A 128, 976 (2022). https://doi.org/10.1007/s00339-022-06049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06049-z

Keywords

Navigation