Skip to main content
Log in

Miniaturized wideband 5G millimeter-wave antenna with two-port positioning analysis for vehicular communication

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents a low-profile, wideband antenna that can operate in four millimeter-wave frequency bands for 5G communication. The proposed antenna has composite geometry with extended blocks from a simple rectangular patch. Here the full ground plane is used to avoid the radiation losses by back lobes and to enhance the antenna performance. The proposed radiating element covers the wideband from 23.812 GHz to 48.253 GHz enclosing operating frequencies k band (26 GHz-F1) and Ka-band (28 GHz-F2, 32 GHz-F3, and 39 GHz-F4). The gains achieved in the designed single element antenna are 5.46 dBi, 5.6 dBi, 6.48 dBi, and 5.56 dBi respectively. Whereas the total efficiencies are 95.33%, 97.23%, 97.75%, and 97.9% for the respective operating frequencies. The proposed antenna is analyzed for Multiple Input Multiple Output (MIMO) communication, providing the isolation value greater than 20 dB. The diversity gain, Envelope Correlation Coefficient, and isolation are all well within their respective limits making the proposed antenna suitable for MIMO communications. Here, to check the versatility of the antenna design different configurations such as 2 × 2, 1 × 2, and port positionings are simulated. Furthermore, the designed single element and MIMO antenna is placed on the vehicle and the far-field results are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.G. Andrews et al., What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014). https://doi.org/10.1109/JSAC.2014.2328098

    Article  Google Scholar 

  2. M. Shafi et al., 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 35(6), 1201–1221 (2017). https://doi.org/10.1109/JSAC.2017.2692307

    Article  Google Scholar 

  3. K. Ding, C. Gao, D. Qu, Q. Yin, Compact broadband MIMO antenna with parasitic strip. IEEE Antennas Wirel. Propag. Lett. 16, 2349–2353 (2017). https://doi.org/10.1109/LAWP.2017.2718035

    Article  ADS  Google Scholar 

  4. M. Zuo, J. Ren, Y.Z. Yin, Dual-band antenna with large frequency ratio based on dual-mode transmission line. IEEE Antennas Wirel. Propag. Lett. 20(10), 2068–2072 (2021). https://doi.org/10.1109/LAWP.2021.3103670

    Article  ADS  Google Scholar 

  5. V. Raghavan et al., Hand and body blockage measurements with form-factor user equipment at GHz. IEEE Trans. Antennas Propag. 70(1), 607–620 (2022). https://doi.org/10.1109/TAP.2021.3098537

    Article  ADS  Google Scholar 

  6. A. Singh, C.E. Saavedra, Low-profile CPW-PS- Fed magnetoelectric antenna. IEEE Antennas Wirel. Propag. Lett. 20(12), 2471–2475 (2021). https://doi.org/10.1109/LAWP.2021.3115234

    Article  ADS  Google Scholar 

  7. K.M. Mak, H.W. Lai, K.M. Luk, A 5G wideband patch antenna with antisymmetric L-shaped probe feeds. IEEE Trans. Antennas Propag. 66(2), 957–961 (2018). https://doi.org/10.1109/TAP.2017.2776973

    Article  ADS  Google Scholar 

  8. U. Dey, M. Lippoldt, Y. Li, J. Hesselbarth, Millimeter-wave measurements and applications of dipole modes in spherical alumina dimer. IEEE Antennas Wirel. Propag. Lett. 20(12), 2349–2353 (2021). https://doi.org/10.1109/LAWP.2021.3110664

    Article  ADS  Google Scholar 

  9. H. Kähkönen, S. Proper, J. Ala-Laurinaho, V. Viikari, Comparison of additively manufactured and machined antenna array performance at Ka-band. IEEE Antennas Wirel. Propag. Lett. 21(1), 9–13 (2022). https://doi.org/10.1109/LAWP.2021.3113372

    Article  ADS  Google Scholar 

  10. W.Y. Yong, A. Haddadi, T. Emanuelsson, A.A. Glazunov, A bandwidth-enhanced cavity-backed slot array antenna for mmwave fixed-beam applications. IEEE Antennas Wirel. Propag. Lett. 19(11), 1924–1928 (2020). https://doi.org/10.1109/LAWP.2020.3022988

    Article  ADS  Google Scholar 

  11. S.R. Govindarajulu, R. Hokayem, M.N.A. Tarek, M.R. Guerra, E.A. Alwan, Low profile dual-band shared aperture array for vehicle-to-vehicle communication. IEEE Access 9, 147082–147090 (2021). https://doi.org/10.1109/ACCESS.2021.3124311

    Article  Google Scholar 

  12. M.O. Khalifa, A.M. Yacoub, D.N. Aloi, A multi-wideband compact antenna design for vehicular sub-6 GHz 5G wireless systems. IEEE Trans. Antennas Propag. (2021). https://doi.org/10.1109/TAP.2021.3083770

    Article  Google Scholar 

  13. D. Liu, X. Gu, C.W. Baks, A. Valdes-Garcia, Antenna-in-package design considerations for Ka- band 5G communication applications. IEEE Trans. Antennas Propag. 65(12), 6372–6379 (2017). https://doi.org/10.1109/TAP.2017.2722873

    Article  ADS  Google Scholar 

  14. M.G.N. Alsath, M. Kanagasabai, Compact UWB monopole antenna for automotive communications. IEEE Trans. Antennas Propag. 63(9), 4204–4208 (2015). https://doi.org/10.1109/TAP.2015.2447006

    Article  ADS  Google Scholar 

  15. J. Xu, W. Hong, Z.H. Jiang, H. Zhang, K. Wu, low-profile wideband vertically folded slotted circular patch array for Ka-band applications. IEEE Trans. Antennas Propag. 68(9), 6844–6849 (2020). https://doi.org/10.1109/TAP.2020.3005028

    Article  ADS  Google Scholar 

  16. L. Wen, Z. Yu, L. Zhu, J. Zhou, High-gain dual- band resonant cavity antenna for 5g millimeter- wave communications. IEEE Antennas Wirel. Propag. Lett. 20(10), 1878–1882 (2021). https://doi.org/10.1109/LAWP.2021.3098390

    Article  ADS  Google Scholar 

  17. J. Zeng, K. Luk, Wideband millimeter-wave end- fire magnetoelectric dipole antenna with microstrip-line feed. IEEE Trans. Antennas Propag. 68(4), 2658–2665 (2020). https://doi.org/10.1109/TAP.2019.2957089

    Article  ADS  Google Scholar 

  18. H. Wang, K.E. Kedze, I. Park, A high-gain and wideband series-fed angled printed dipole array antenna. IEEE Trans. Antennas Propag. 68(7), 5708–5713 (2020). https://doi.org/10.1109/TAP.2020.2975882

    Article  ADS  Google Scholar 

  19. T. Zhang, L. Chen, A.U. Zaman, J. Yang, Ultra- wideband millimeter-wave planar array antenna with an upside-down structure of printed ridge gap waveguide for stable performance and high antenna efficiency. IEEE Antennas Wirel. Propag. Lett. 20(9), 1721–1725 (2021). https://doi.org/10.1109/LAWP.2021.3095124

    Article  ADS  Google Scholar 

  20. Z. Wani, M.P. Abegaonkar, S.K. Koul, Thin planar metasurface lens for millimeter-wave MIMO applications. IEEE Trans. Antennas Propag. 70(1), 692–696 (2022). https://doi.org/10.1109/TAP.2021.3098571

    Article  ADS  Google Scholar 

  21. C.-X. Mao, M. Khalily, P. Xiao, T.W.C. Brown, S. Gao, Planar sub-millimeter-wave array antenna with enhanced gain and reduced sidelobes for 5g broadcast applications. IEEE Trans. Antennas Propag. 67(1), 160–168 (2019). https://doi.org/10.1109/TAP.2018.2874796

    Article  ADS  Google Scholar 

  22. M. Khalily, R. Tafazolli, P. Xiao, A.A. Kishk, Broadband mm-wave microstrip array antenna with improved radiation characteristics for different 5g applications. IEEE Trans. Antennas Propag. 66(9), 4641–4647 (2018). https://doi.org/10.1109/TAP.2018.2845451

    Article  ADS  Google Scholar 

  23. H. Arun, A.K. Sarma, M. Kanagasabai, S. Velan, C. Raviteja, M.G.N. Alsath, Deployment of modified serpentine structure for mutual coupling reduction in MIMO antennas. IEEE Antennas Wirel. Propag. Lett. 13, 277–280 (2014). https://doi.org/10.1109/LAWP.2014.2304541

    Article  ADS  Google Scholar 

  24. Y.-W. Wu, Z.-W. Miao, G.Q. Luo, Z.-C. Hao, Planar millimeter-wave shared-aperture self-diplexing antenna with small frequency ratio and high isolation. IEEE Trans. Antennas Propag. 69(12), 8979–8984 (2021). https://doi.org/10.1109/TAP.2021.3098525

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project is supported by the Department of Science and Technology (DST) under Indo Sri Lanka cooperative research under Grant No.: DST/INT/SL/P-28.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmathi Shanmuganathan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmuganathan, S., Kanagasabai, M., Mohammed, G.N.A. et al. Miniaturized wideband 5G millimeter-wave antenna with two-port positioning analysis for vehicular communication. Appl. Phys. A 128, 823 (2022). https://doi.org/10.1007/s00339-022-05923-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05923-0

Keywords

Navigation