Skip to main content
Log in

Above room temperature magnetic entropy in non-stoichiometric manganese of La0.67Sr0.33MnO3 manganites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

With an aim to improve the magnetocaloric effect above the room temperature for practical applications, La0.67Sr0.33MnO3 manganite with different manganese concentrations has been synthesized using a novel technique with oxalic acid as a fuel material. The X-ray photoelectron spectroscopy studies confirm the presence of mixed valence states of Mn3+ and Mn4+ with varying manganese content. Studies of the magnetic properties reveal that the samples undergo ferromagnetic to paramagnetic transitions well above room temperatures, i.e., around 383 K. The second order of magnetic phase transition has been confirmed from Arrott plots. The entropy change (ΔSM) over a wide temperature range was observed around magnetic transition temperature in all the samples which can be considered as a suitable material for magnetic refrigeration applications. A reduction in magnetic entropy in deficiency and excess of manganese samples has been attributed to the magnetic inhomogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Tokura, Y. Tomioka, H. Kuwahara, A. Asamitsu, Y. Moritomo, M. Kasai, Origins of colossal magnetoresistance in perovskite-type manganese oxides (invited). J. Appl. Phys. 79(8), 5288 (1996). https://doi.org/10.1063/1.361353

    Article  ADS  Google Scholar 

  2. S.C. Bhargava, S. Singh, D.C. Kundaliya, S.K. Malik, Phase separation in La0.67Ca0.33Mn0.9Fe0.1O3: a mössbauer study. J. Phys. Condens. Matter 16(9), 1665–1678 (2004). https://doi.org/10.1088/0953-8984/16/9/014

    Article  ADS  Google Scholar 

  3. S.C. Bhargava, H.P. Kunkel, S. Singh, S.K. Malik, D.D. Buddhikot, A.H. Morrish, Phase separations in La 0.7-xDy xCa 0.3Mn(Fe) O 3. Phys. Rev. B – Condens. Matter. Mater. Phys. 71(10), 1–15 (2005). https://doi.org/10.1103/PhysRevB.71.104419

    Article  Google Scholar 

  4. S.C. Bhargava, S. Singh, S.K. Malik, Critical composition of La0.7 - x Dyx Ca0.3 Mn (Fe) O3 for high CMR. J. Magn. Magn. Mater. 311(2), 594–604 (2007). https://doi.org/10.1016/j.jmmm.2006.08.038

    Article  ADS  Google Scholar 

  5. J. Fan, L. Ling, B. Hong, L. Pi, Y. Zhang, Magnetocaloric effect in perovskite manganite Nd0.6 La0.1 Sr0.3 MnO3. J. Magn. Magn. Mater. 321(18), 2838–2841 (2009). https://doi.org/10.1016/j.jmmm.2009.04.027

    Article  ADS  Google Scholar 

  6. M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308(2), 325–340 (2007). https://doi.org/10.1016/j.jmmm.2006.07.025

    Article  ADS  Google Scholar 

  7. S. Vadnala, S. Asthana, Magnetocaloric effect and critical field analysis in Eu substituted La0.7-xEuxSr0.3MnO3 (x = 0.0, 0.1, 0.2, 0.3) manganites. J. Magn. Magn. Mater. 446, 68–79 (2018). https://doi.org/10.1016/j.jmmm.2017.09.001

    Article  ADS  Google Scholar 

  8. S. Bouzidi, M.A. Gdaiem, S. Rebaoui, J. Dhahri, E.K. Hlil, Large magnetocaloric effect in La0.75Ca0.25–xNaxMnO3 (0 ≤ x ≤ 0.10) manganites. Appl. Phys. A. Mate.r Sci. Process. (2020). https://doi.org/10.1007/s00339-019-3219-z

    Article  Google Scholar 

  9. J. Dhahri, A. Dhahri, M. Oumezzine, E. Dhahri, Effect of Sn-doping on the structural, magnetic and magnetocaloric properties of la0.67Ba0.33Mn1-xSn xO3 compounds. J. Magn. Magn. Mater. 320(21), 2613–2617 (2008). https://doi.org/10.1016/j.jmmm.2008.05.030

    Article  ADS  Google Scholar 

  10. G.F. Wang, Z.R. Zhao, L.R. Li, X.F. Zhang, Effect of non-stoichiometry on the structural, magnetic and magnetocaloric properties of La0.67Ca0.33Mn1+δO3 manganites. J. Magn. Magn. Mater. 397, 198–204 (2016). https://doi.org/10.1016/j.jmmm.2015.08.096

    Article  ADS  Google Scholar 

  11. Z. Wei et al., Influence of post-annealing, defect chemistry and high pressure on the magnetocaloric effect of non-stoichiometric La0.8-xK0.2Mn1+xO3 compounds. Ceram. Int. 47(17), 24553–24563 (2021). https://doi.org/10.1016/j.ceramint.2021.05.174

    Article  Google Scholar 

  12. S. Hébert, B. Wang, A. Maignan, C. Martin, R. Retoux, B. Raveau, Erratum: vacancies at Mn-site in Mn3+ rich manganites: a route to ferromagnetism but not to metallicity (Solid State Communications (2002) 123 (311–315) PII S0038109802007792). Solid. State. Commun. 125(5), 295 (2003). https://doi.org/10.1016/S0038-1098(02)00779-2

    Article  ADS  Google Scholar 

  13. M.H. Phan, S.C. Yu, N.H. Hur, Magnetic and magnetocaloric properties of (La1-x)0.8Ca0.2MnO3 (x = 0.05, 0.20) single crystals. J. Magn. Magn. Mater. 262(3), 407–411 (2003). https://doi.org/10.1016/S0304-8853(03)00071-4

    Article  ADS  Google Scholar 

  14. A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati, J.M.D. Coey, Magnetocaloric effect in La0.67Sr0.33MnO3 manganite above room temperature. J. Magn. Magn. Mater. 323(16), 2214–2218 (2011). https://doi.org/10.1016/j.jmmm.2011.03.036

    Article  ADS  Google Scholar 

  15. M. Pekała, V. Drozd, Magnetocaloric effect in nano- and polycrystalline La0.8Sr0.2MnO3 manganites. J. Non. Cryst. Solids 354(47–51), 5308–5314 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.06.112

    Article  ADS  Google Scholar 

  16. C.P. Reshmi, S. Savitha Pillai, K.G. Suresh, M.R. Varma, Room temperature magnetocaloric properties of Ni substituted La 0.67Sr0.33MnO3. Solid. State. Sci. 19, 130–135 (2013). https://doi.org/10.1016/j.solidstatesciences.2013.02.019

    Article  ADS  Google Scholar 

  17. M.S. Anwar, S. Kumar, F. Ahmed, G.W. Kim, B.H. Koo, Microwave assisted hydrothermal synthesis and magnetocaloric properties of La 0.67 Sr 0.33 MnO 3 manganite. J. Nanosci. Nanotechnol. 12(7), 5523–5526 (2012). https://doi.org/10.1166/jnn.2012.6327

    Article  Google Scholar 

  18. E. Vladimirova, V. Vassiliev, A. Nossov, Synthesis of La1-xPbxMnO3 colossal magnetoresistive ceramics from co-precipitated oxalate precursors. J. Mater. Sci. 36(6), 1481–1486 (2001). https://doi.org/10.1023/A:1017548813705

    Article  ADS  Google Scholar 

  19. V. Uskoković, M. Drofenik, Synthesis of lanthanum-strontium manganites by oxalate-precursor co-precipitation methods in solution and in reverse micellar microemulsion. J. Magn. Magn. Mater. 303(1), 214–220 (2006). https://doi.org/10.1016/j.jmmm.2005.06.034

    Article  ADS  Google Scholar 

  20. K. Swetha et al., Effect of manganese stoichiometry at B-site on magneto-transport and magnetic properties of La0.67Sr0.33MnO3manganites. Ceram. Int. 48(9), 12779–12789 (2022). https://doi.org/10.1016/j.ceramint.2022.01.148

    Article  Google Scholar 

  21. N.M. Kirby, A. Van Riessen, C.E. Buckley, V.W. Wittorff, Oxalate-precursor processing for high quality BaZrO3. J. Mater. Sci. 40(1), 97–106 (2005). https://doi.org/10.1007/s10853-005-5692-3

    Article  ADS  Google Scholar 

  22. A.B. Lavand, Y.S. Malghe, Synthesis of nanosized BaZrO3 from oxalate precursor. J. Therm. Anal. Calorim. 118(3), 1613–1618 (2014). https://doi.org/10.1007/s10973-014-4033-7

    Article  Google Scholar 

  23. P. Peng, Y. Tsai, J. Yeh, Y. Lin, C. Huang, Influence of Sr substitution on catalytic performance of laMnO 3 / Ni metal foam composite for CO oxidation. Aerosol. Air. Qual. Res. (2015). https://doi.org/10.4209/aaqr.2014.11.0286

    Article  Google Scholar 

  24. A.K. Opitz et al., The chemical evolution of the La0.6Sr0.4CoO3−Δ surface under SOFC operating conditions and its implications for electrochemical oxygen exchange activity. Top. Catal. 61(20), 2129–2141 (2018). https://doi.org/10.1007/s11244-018-1068-1

    Article  Google Scholar 

  25. S.R. Chandiri, R. Gundeboina, V. Perala, S. Kurra, U. Baig, V. Muga, Tailoring the luminescence and photocatalytic activity of KMn4(PO4)3 by Anions (N3- and S2-) doping. J. Chem. Technol. Biotechnol. 92(10), 2746–2759 (2017). https://doi.org/10.1002/jctb.5315

    Article  Google Scholar 

  26. M.P. Dojcinovic, Z.Z. Vasiljevic, J. Kovac, N.B. Tadic, M.V. Nikolic, Nickel manganite-sodium alginate nano-biocomposite for temperature sensing. Chemosensors 9, 241 (2021)

    Article  Google Scholar 

  27. A.R. Shelke et al., Correlation of structural, transport and magnetic properties in La1−xZrxMnO3 manganite samples. Ceram. Int. 42(10), 12038–12045 (2016). https://doi.org/10.1016/j.ceramint.2016.04.131

    Article  Google Scholar 

  28. Y. Zhang-Steenwinkel, J. Beckers, A. Bliek, Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum-manganese oxides. Appl. Catal. A Gen. 235(1–2), 79–92 (2002). https://doi.org/10.1016/S0926-860X(02)00241-7

    Article  Google Scholar 

  29. S. Ponce, M.A. Peña, J.L.G. Fierro, Surface properties and catalytic performance in methane combustion of SR-substituted lanthanum manganites. Appl. Catal. B Environ. 24(3–4), 193–205 (2000). https://doi.org/10.1016/S0926-3373(99)00111-3

    Article  Google Scholar 

  30. V.K. Pecharsky, K.A. Gschneidner, Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200(1–3), 44–56 (1999). https://doi.org/10.1016/S0304-8853(99)00397-2

    Article  ADS  Google Scholar 

  31. J. Mira, J. Rivas, L.E. Hueso, F. Rivadulla, M.A. López Quintela, Drop of magnetocaloric effect related to the change from first- to second-order magnetic phase transition in La2/3(Ca1-xSrx)1/3MnO3. J. Appl. Phys 91(10), 8903–8905 (2002). https://doi.org/10.1063/1.1451892

    Article  ADS  Google Scholar 

  32. M.S. Anwar, S. Kumar, F. Ahmed, N. Arshi, G.W. Kim, B.H. Koo, Above room temperature magnetic transition and magnetocaloric effect in La 0.66Sr 0.34MnO 3. J. Korean Phys. Soc. 60(10), 1587–1592 (2012). https://doi.org/10.3938/jkps.60.1587

    Article  ADS  Google Scholar 

  33. M.H. Phan, S.B. Tian, D.Q. Hoang, S.C. Yu, C. Nguyen, A.N. Ulyanov, Large magnetic-entropy change above 300 K in CMR materials. J. Magn. Magn. Mater. 258–259, 309–311 (2003). https://doi.org/10.1016/S0304-8853(02)01151-4

    Article  ADS  Google Scholar 

  34. M. Pekała, V. Drozd, Magnetocaloric effect in La0.8Sr0.2MnO3 manganite. J. Alloys Compd. 456(1–2), 30–33 (2008). https://doi.org/10.1016/j.jallcom.2007.02.092

    Article  Google Scholar 

Download references

Acknowledgements

The first author wishes to thank the Department of Science and Technology (DST), New Delhi, India, for providing financial assistance under Women Scientist Scheme-A (SR/WOS-A/PM-13/2018(G)). The first and corresponding authors acknowledge Dr. K.V. Siva Kumar (Retd. Prof.) for helping us in developing synthesis method and for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kalyana Lakshmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swetha, K., Bharadwaj, S., Kumar, N.P. et al. Above room temperature magnetic entropy in non-stoichiometric manganese of La0.67Sr0.33MnO3 manganites. Appl. Phys. A 128, 727 (2022). https://doi.org/10.1007/s00339-022-05879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05879-1

Keywords

Navigation