Skip to main content
Log in

A sensitive and selective electrochemical sensor based on gold nanoparticle/multi-walled carbon nanotubes for detection of Staphylococcus aureus Alpha-toxin

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Due to the high importance of Staphylococcus aureus alpha-toxin in poisoning and pathogenicity of this bacterium, we developed a sensitive and selective sensor based on gold nanoparticle/multi-walled carbon nanotubes modified carbon paste electrode and 1-butyl-3-methylimidazolium hexafluorophosphate as a binder for electrochemical detection of alpha-toxin. The prepared nanocomposite was characterized by transmission electron microscopy, scanning electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and UV–visible spectra. The square wave voltammetry as a sensitive technique was selected for the quantification of alpha-toxin. Electrochemical behavior of unmodified and modified electrode, the type and pH value of supporting electrolyte, and scan rate were done for quantification of alpha-toxin. To determine the specificity of the aptasensor, the interference of some serum markers were also examined. The linear range and detection limit were calculated at 3.0–250.0 nM and 1.0 nM, respectively. The relative standard deviations for 5.0 nM and 100.0 nM alpha-toxin were obtained 1.15–0.83%, respectively. None of the interfering factors were involved in measuring the concentration of 120.0 nM alpha-toxin. Therefore, the introduced aptasensor with high sensitivity, selectivity, and repeatability, was used for the determination of alpha-toxin in the serum sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.M. Dinges, P.M. Orwin, P.M. Schlievert, Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13(1), 16–34 (2000)

    Article  Google Scholar 

  2. G. Ghosh, L.G. Bachas, K.W. Anderson, Biosensor incorporating cell barrier architectures for detecting Staphylococcus aureus alpha toxin. Anal. Bioanal. Chem. 387(2), 567–574 (2007)

    Article  Google Scholar 

  3. T.A. Taylor, C.G. Unakal, Staphylococcus aureus (StatPearls, St. Petersburg, 2021)

    Google Scholar 

  4. D. Oliveira, A. Borges, M. Simões, Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins 10(6), 252 (2018)

    Article  Google Scholar 

  5. K. Tam, V.J. Torres, Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol Spectr. 7(2), 7–2 (2019)

    Article  Google Scholar 

  6. F. Vandenesch, G. Lina, T. Henry, Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front. Cell. Infect. Microbiol. 2, 12 (2012)

    Article  Google Scholar 

  7. G. Jacobsson et al., Antibody responses in patients with invasive Staphylococcus aureus infections. Eur. J. Clin. Microbiol. Infect. Dis. 29(6), 715–725 (2010)

    Article  Google Scholar 

  8. J.B. Wardenburg, R.J. Patel, O. Schneewind, Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect. Immun. 75(2), 1040–1044 (2007)

    Article  Google Scholar 

  9. M. Shahdordizadeh et al., Aptamer based biosensors for detection of Staphylococcus aureus. Sens. Actuators, B Chem. 241, 619–635 (2017)

    Article  Google Scholar 

  10. P.K. Reddy et al., Evaluation of IgY capture ELISA for sensitive detection of Alpha hemolysin of Staphylococcus aureus without staphylococcal protein A interference. J. Immunol. Methods 391(1–2), 31–38 (2013)

    Article  Google Scholar 

  11. P. Den Reijer et al., Detection of alpha-toxin and other virulence factors in biofilms of Staphylococcus aureus on polystyrene and a human epidermal model. PLoS ONE 11(1), e0145722 (2016)

    Article  Google Scholar 

  12. A. Maerle et al., Detection of Staphylococcus aureus toxins using immuno-PCR. Russ. J. Bioorg. Chem. 40(5), 526–531 (2014)

    Article  Google Scholar 

  13. T. Andersson et al., Development of a molecular imprinting-based surface plasmon resonance biosensor for rapid and sensitive detection of Staphylococcus aureus alpha hemolysin from human serum. Front Cell Infect Microbiol (2020). https://doi.org/10.3389/fcimb.2020.571578

    Article  Google Scholar 

  14. K. Hong et al., In vitro selection of single-stranded DNA molecular recognition elements against S. aureus alpha toxin and sensitive detection in human serum. Int J Mol Sci. 16(2), 2794–2809 (2015)

    Article  Google Scholar 

  15. S. Song et al., Aptamer-based biosensors. TrAC, Trends Anal. Chem. 27(2), 108–117 (2008)

    Article  Google Scholar 

  16. O. Alkhamis et al., Innovative engineering and sensing strategies for aptamer-based small-molecule detection. TrAC, Trends Anal. Chem. 121, 115699 (2019)

    Article  Google Scholar 

  17. H. Kaur, Recent developments in cell-SELEX technology for aptamer selection. Biochim Biophys Acta (BBA) Gen Subj. 1862(10), 2323–2329 (2018)

    Article  Google Scholar 

  18. B. Lin et al., Tracing tumor-derived exosomal PD-L1 by dual-aptamer activated proximity-induced droplet digital PCR. Angew. Chem. Int. Ed. 60(14), 7582–7586 (2021)

    Article  Google Scholar 

  19. L. Wang et al., An aptamer-based PCR method coupled with magnetic immunoseparation for sensitive detection of Salmonella Typhimurium in ground turkey. Anal. Biochem. 533, 34–40 (2017)

    Article  Google Scholar 

  20. N. Arroyo-Currás et al., From the beaker to the body: translational challenges for electrochemical, aptamer-based sensors. Anal. Methods 12(10), 1288–1310 (2020)

    Article  Google Scholar 

  21. H. Shan et al., Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J Mater Chem B 8(27), 5808–5825 (2020)

    Article  Google Scholar 

  22. L. Wang et al., A DNAzyme-assisted triple-amplified electrochemical aptasensor for ultra-sensitive detection of T-2 toxin. Sens. Actuators, B Chem. 328, 129063 (2021)

    Article  Google Scholar 

  23. N. Ullah et al., An electrochemical Ti3C2Tx aptasensor for sensitive and label-free detection of marine biological toxins. Sensors 21(14), 4938 (2021)

    Article  ADS  Google Scholar 

  24. Z. Wang et al., Carbon nanomaterials-based electrochemical aptasensors. Biosens. Bioelectron. 79, 136–149 (2016)

    Article  Google Scholar 

  25. M. Negahdary, Electrochemical aptasensors based on the gold nanostructures. Talanta 216, 120999 (2020)

    Article  Google Scholar 

  26. S. Wu et al., Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor for highly sensitive detection of cholesterol. Front. Chem. Sci. Eng. 15(6), 1572–1582 (2021)

    Article  Google Scholar 

  27. E.M.C. Contreras, E.P. Bandarra Filho, Heat transfer performance of an automotive radiator with MWCNT nanofluid cooling in a high operating temperature range. Appl Therm Eng. 207, 118149 (2022)

    Article  Google Scholar 

  28. L.S. Parreira et al., MWCNT-COOH supported PtSnNi electrocatalysts for direct ethanol fuel cells: low Pt content, selectivity and chemical stability. Renew Energy 143, 1397–1405 (2019)

    Article  Google Scholar 

  29. H.K. Sezer, O. Eren, FDM 3D printing of MWCNT re-inforced ABS nano-composite parts with enhanced mechanical and electrical properties. J. Manuf. Process. 37, 339–347 (2019)

    Article  Google Scholar 

  30. L. Wang, Y. Wang, Q. Zhuang, Simple self-referenced ratiometric electrochemical sensor for dopamine detection using electrochemically pretreated glassy carbon electrode modified by acid-treated multiwalled carbon nanotube. J. Electroanal. Chem. 851, 113446 (2019)

    Article  Google Scholar 

  31. L. Wang, Y. Liu, Y. Chen, Effective electrochemical sensor based on Au nanoparticles decorated carboxylated multi-wall carbon nanotube (AuNPS@ c-MWCNTs) nanocomposites for determination of dicapthon pesticide in agricultural food. Int J Electrochem Sci (2021). https://doi.org/10.20964/2021.04.64

    Article  Google Scholar 

  32. M. Ghanavati, F. Tadayon, H. Bagheri, A novel label-free impedimetric immunosensor for sensitive detection of prostate specific antigen using Au nanoparticles/MWCNTs-graphene quantum dots nanocomposite. Microchem. J. 159, 105301 (2020)

    Article  Google Scholar 

  33. J. Dong et al., Synthesis of precision gold nanoparticles using Turkevich method. Kona Powder Part. J. 37, 224–232 (2020)

    Article  Google Scholar 

  34. K. Charoenkitamorn et al., Low-cost and disposable sensors for the simultaneous determination of coenzyme Q10 and α-lipoic acid using manganese (IV) oxide-modified screen-printed graphene electrodes. Anal. Chim. Acta 1004, 22–31 (2018)

    Article  Google Scholar 

  35. M. Ameri et al., Biosensors for detection of Tau protein as an Alzheimer’s disease marker. Int. J. Biol. Macromol. 162, 1100–1108 (2020)

    Article  Google Scholar 

  36. Z. Jahromi et al., A rapid and selective electrochemical sensor based on electrospun carbon nanofibers for tramadol detection. Microchem. J. 157, 104942 (2020)

    Article  Google Scholar 

  37. S. Alim et al., Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: a review. Biosens. Bioelectron. 121, 125–136 (2018)

    Article  Google Scholar 

  38. S. Campuzano, P. Yáñez-Sedeño, J.M. Pingarrón, Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials 9(4), 634 (2019)

    Article  Google Scholar 

  39. T.A. Silva et al., Electrochemical biosensors based on nanostructured carbon black: a review. J Nanomater 2017, 1–4 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheleh Halabian.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakyly, S., Sedighian, H., Jahromi, Z. et al. A sensitive and selective electrochemical sensor based on gold nanoparticle/multi-walled carbon nanotubes for detection of Staphylococcus aureus Alpha-toxin. Appl. Phys. A 128, 680 (2022). https://doi.org/10.1007/s00339-022-05822-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05822-4

Keywords

Navigation