Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Graphene and carbon structures and nanomaterials for energy storage

  • Published:
Applied Physics A Aims and scope Submit manuscript

This article was retracted on 29 February 2024

This article has been updated

Abstract

There is enormous interest in the use of graphene-based materials for energy storage. This article discusses the progress that has been accomplished in the development of chemical, electrochemical, and electrical energy storage systems using graphene. We summarize the theoretical and experimental work on graphene-based hydrogen storage systems, lithium batteries, and supercapacitors. Graphene could also be a two-dimensional (2D) sheet of carbon atoms in a very hexagonal (honeycomb) configuration. The carbon atoms in graphene are bonded with the SP2 hybrid. Graphene is the most recent member of the multidimensional graphite carbon family of materials. This family includes fullerene as zero-dimensional (0D) nanomaterials, carbon nanotubes as one-dimensional (1D) nanomaterials, and graphite as a three-dimensional (3D) material. The term graphene was first coined in 1986 to form the word graphite and a suffix (s) per polycyclic aromatic hydrocarbons. Additionally, to monolayer and bilayer graphene, graphene layers from 3 to 10 layers are called few-layer graphene and between 10 and 30 layers are called multiplayer graphene, thick graphene, or nanocrystals. Graphene is typically expected to contain only one layer, but there is considerable interest in researching bilayer and low-layer graphene. There are several methods for producing graphene, each with its own advantages and disadvantages. Graphene-based materials have great potential to be employed in supercapacitors due to their unique two-dimensional structure and inherent physical properties like excellent electrical conductivity and large area. This text summarizes recent developments within the sector of supercapacitors, including double-layer capacitors and quasi-capacitors. The pros and cons of using them in supercapacitors are discussed. Compared to traditional electrodes, graphene-based materials show some new properties and mechanisms within the method of energy storage and release. During this paper, we briefly describe carbon structures, particularly graphene, and also the history of graphene discovery, and briefly describe the synthesis methods, properties, characterization methods, and applications of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  1. http://www.nanoclub.ir/index.php/articles/show/197

  2. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. A.K. Geim, Graphene: status prospects. Science 324, 1530–1534 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. M. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10, 20–27 (2007)

    Article  CAS  Google Scholar 

  5. C.N.R. Rao, K. Biswas, K.S. Subrahmanyam, A. Govindaraj, Graphene, the New Nanocarbon. J. Mater. Chem. 19, 2457–2469 (2009)

    Article  CAS  Google Scholar 

  6. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh, Graphene for electrochemical. Sensing Biosensing. TrAC, Trends Anal. Chem. 29, 954–965 (2010)

    Article  CAS  Google Scholar 

  8. Wikipedia®, Graphene http://en.wikipedia.org/wiki/Graphene

  9. R. Heyrovska, Atomic structures of graphene, benzene methane with bond lengths as sums of the single, double resonance bond radii of carbon (2008)

  10. A. K. Geim, P. Kim, Carbon wonderland. Scientific American (2008), pp. 90–97

  11. W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of grapheneits applications: a review. Crit. Rev. Solid StateMater. Sci. 35, 52–71 (2010)

    Article  ADS  CAS  Google Scholar 

  12. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. H.P. Boehm, R. Setton, E. Stumpp, Nomenclature terminology of graphite intercalation compounds II. Carbon 24, 241–245 (1986)

    Article  CAS  Google Scholar 

  14. S. Mouras, A. Hamwi, D. Djurado, J.C. Cousseins, Synthesis of first stage graphite intercalation compounds with fluorides. Revue de Chimie Minerale 24, 572–582 (1987)

    Google Scholar 

  15. D. Chandler, A New Approach to Water Desalination. MIT Tech Talk 53, 1–4 (2009)

    Google Scholar 

  16. Wikipedia®, Graphite intercalation compound. http://en.wikipedia.org/wiki/Graphite_intercalation_compound

  17. B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. A 149, 249–259 (1859)

    Article  ADS  Google Scholar 

  18. H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Das Adsorptionsverhalten Sehr Dunner Kohlenstoff-Folien. Zeitschrift fuer Anorganische und Allgemeine Chemie 316, 119–127 (1962)

    Article  CAS  Google Scholar 

  19. A.K. Geim, Graphene prehistory. Physica 146, 014003 (2012)

    Google Scholar 

  20. C. Oshima, A. Nagashima, Ultra-thin epitaxial films of graphite hexagonal boron nitride on solid surfaces. J. Phys. Condensed Matter 9, 1–20 (1997)

    Article  ADS  CAS  Google Scholar 

  21. K. Seibert, G.C. Cho, W. Kütt, H. Kurz, D.H. Reitze, J.I. Dadap, H. Ahn, M.C. Downer, A.M. Malvezzi, Femtosecond carrier dynamics in graphite. Phys. Rev. B 42, 2842–2851 (1990)

    Article  ADS  CAS  Google Scholar 

  22. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angewandte Chemie Int. Edn. 48, 7752–7777 (2009)

    Article  CAS  Google Scholar 

  25. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors biosensors: a review. Electroanalysis 22, 1027–1036 (2010)

    Article  CAS  Google Scholar 

  26. P.W. Sutter, J.I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium. Nat. Mater. 7, 406–411 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Y.S. Dedkov, M. Fonin, U. Rüdiger, C. Laubschat, Rashba effect in the graphene/Ni(111) system. Phys. Rev. Lett. 100, 107602–107605 (2008)

    Article  ADS  PubMed  Google Scholar 

  28. X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. A. Dato, V. Radmilovic, Z.H. Lee, J. Phillips, M. Frenklach, Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 8, 2012–2016 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. W.A. de Heera, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Epitaxial graphene. Solid State Commun. 143, 92–100 (2007)

    Article  ADS  Google Scholar 

  33. X. Wang, L.J. Zhi, N. Tsao, Z. Tomovic, J. Li, K. Müllen, Transparent carbon films as electrodes in organic solar cells. Angewandte Chemie, Int. Edn. 47, 2990–2992 (2008)

    Article  CAS  Google Scholar 

  34. M. Choucair, P. Thordarson, J.A. Stride, Gram-scale production of graphene based on solvo thermal. Nat. Nanotechnol. 4, 30–33 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. A. K. Geim, P. Kim, Carbon wonderland. Scientific American (2008), pp. 90–97

  36. K. Seibert, G.C. Cho, W. Kütt, H. Kurz, D.H. Reitze, J.I. Dadap, H. Ahn, M.C. Downer, A.M. Malvezzi, Femtosecond carrier dynamics in graphite. Phys. Rev. B 42, 2842–2851 (1990)

    Article  ADS  CAS  Google Scholar 

  37. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. D.W. Boukhvalov, M.I. Katsnelson, Modeling of graphite oxide. J. Ame. Chem. Soc. 130, 10697–10701 (2008)

    Article  CAS  Google Scholar 

  39. D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010)

    Article  CAS  PubMed  Google Scholar 

  40. C.Y. Su, A.Y. Lu, Y. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, High-quality thin graphene films fast electrochemical exfoliation. ACS Nano 5, 2332–2339 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. J. Wang, K.K. Manga, Q. Bao, K.P. Loh, High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J. Am. Chem. Soc. 133, 8888–8891 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai, Narrow graphene nanoribbons carbon nanotubes. Nature 458, 877–880 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  44. K.S. Subrahmanyam, S.R.C. Vivekchand, A. Govindaraj, C.N.R. Rao, A study of graphenes prepared by different methods: characterization, properties solubilization. J. Mater. Chem. 18, 1517–1523 (2008)

    Article  CAS  Google Scholar 

  45. A. Safavi, M. Tohidi, F. Aghakhani Mahyari, H. Shahbaazi, One -pot synthesis of large scale graphene nanosheets graphite–liquid crystal composite via thermal treatment. J. Mater. Chem. 22, 3825–3831 (2012)

    Article  CAS  Google Scholar 

  46. W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of grapheneits applications: a review. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010)

    Article  ADS  CAS  Google Scholar 

  47. J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic extrinsic performance s of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008)

    Article  CAS  PubMed  Google Scholar 

  48. A. Kuzmenko, E.V. Heumen, F. Carbone, D.V. Marel, universal optical conductance of graphite. Phys. Rev. Lett. 100, 117401–117404 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  49. N.M.R. Peres, The electronic properties of grapheneits bilayer. Vacuum 83, 1248–1252 (2009)

    Article  ADS  CAS  Google Scholar 

  50. S.V. Morozov, K.S. Novoselov, F. Schedin, D. Jiang, A.A. Firsov, A.K. Geim, Two-dimensional electron hole gases at the surface of graphite. Phys. Rev. B 72, 201401 (2005)

    Article  ADS  Google Scholar 

  51. S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon, Solution properties of graphite graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006)

    Article  CAS  PubMed  Google Scholar 

  52. D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010)

    Article  CAS  PubMed  Google Scholar 

  53. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z.Y. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  54. A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  55. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)

    Article  CAS  PubMed  Google Scholar 

  56. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Gu, Reduction of graphene oxide via l-ascorbic acid. Chem. Commun. 46, 1112–1114 (2010)

    Article  CAS  Google Scholar 

  57. N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One-step ionic-liquid-assisted electrochemical synthesis of. ionic-liquid- functionalized graphene sheets. Adv. Funct. Mater. 18, 1518–1525 (2008)

    Article  CAS  Google Scholar 

  58. S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Wettability surface free energy of graphene films. Langmuir 25, 11078–11081 (2009)

    Article  CAS  PubMed  Google Scholar 

  59. J. Wang, K.K. Manga, Q. Bao, K.P. Loh, High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J. Am. Chem. Soc. 133, 8888–8891 (2011)

    Article  CAS  PubMed  Google Scholar 

  60. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  61. http://shimisara.blogfa.com/post/101

  62. A.H. Castro Neto, K. Novoselov, Two-dimensional crystals: beyond graphene. Mater. Express 1, 10–17 (2011)

    Article  CAS  Google Scholar 

  63. L. Karuppasamy, L. Gurusamy, G.J. Lee, J.J. Wu, Synthesis of metal/metal oxide supported reduced graphene oxide (RGO) for the applications of electrocatalysis and supercapacitors, in Graphene functionalization strategies. Carbon nanostructures. ed. by A. Khan, M. Jawaid, B. Neppolian, A. Asiri (Springer, Singapore, 2019)

    Google Scholar 

  64. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano Lett. 10, 4863 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  65. M. Pumera, Chem. Record 9, 211–23 (2009)

    Article  CAS  Google Scholar 

  66. H. Pan, Nanoscale Res. Lett. 5, 654–68 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Adv. Mater. 23, 4828–4850 (2011)

    Article  CAS  PubMed  Google Scholar 

  68. Y. Zhang, H. Feng, X.B. Wu, L.Z. Wang, A.Q. Zhang, T.C. Xia, H.C. Dong, X.F. Li, L.S. Zhang, Int. J. Hydr. Energy 34, 255–261 (2009)

    Article  Google Scholar 

  69. M.D. Stoller, S. Park, Z. Yanwu, J. An, R.S. Ruoff, Graphene-based ultra capacitors. Nano Lett. 8(10), 3498–3502 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, J. Phys. Chem. C 113, 21269–21273 (2009)

    Article  Google Scholar 

  71. Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen, J. Phys. Chem. C 113, 21269–21273 (2009)

    Article  Google Scholar 

  72. W. Lv, D.M. Tang, Y.B. He, C.H You, Z.Q. Shi, X.C. Chen, C.M. Chen, P.X. Hou, C. Liu, Q.H. Yang, ACS Nano, 3, 3730–3736 (2009).

  73. Y.W. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon 48, 2118–2122 (2010)

    Article  CAS  Google Scholar 

  74. Y.W. Zhu, M.D. Stoller, W.W. Cai, A. Velamakanni, R.D. Piner, D. Chen, R.S. Ruoff, ACS Nano 4, 1806–1812 (2010)

    Google Scholar 

  75. D.W. Wang, F. Li, Z.S. Wu, W. Ren, H.M. Cheng, Electro-chem. Commun. 11, 1729–1732 (2009)

    Article  CAS  Google Scholar 

  76. Y. Si, E.T. Samulski, Chem. Mater. 20, 6792–6797 (2008)

    Article  CAS  Google Scholar 

  77. D.-W. Wang, F. Li, Z.-S. Wu, W. Ren, H.-M. Cheng, Electrochemical interfacial capacitance in multilayer graphene sheets: Dependence on number of stacking layers. Electrochem. Commun. 11(9), 1729–1732 (2009). https://doi.org/10.1016/j.elecom.2009.06.034

    Article  CAS  Google Scholar 

  78. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 4, 6212–6218 (2010)

    Article  CAS  PubMed  Google Scholar 

  79. D. Pukazhselvan, V. Kumar, S.K. Singh, High capacity hydrogen storage: Basic aspects, new developments and milestones. Nano Energy 1(4), 566–589 (2012). https://doi.org/10.1016/j.nanoen.2012.05.004

    Article  CAS  Google Scholar 

  80. S. Chen, J. Zhu, X. Wang, From graphene to metal oxide nanolamellas: A phenomenon of morphology transmission. ACS Nano 4(10), 6212–6218 (2010). https://doi.org/10.1021/nn101857y

    Article  CAS  PubMed  Google Scholar 

  81. H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, Z.-Q. Lei, Z.-Y. Zhang, Y.-Y. Yang, Facile solvothermal synthesis of a graphene nanosheet–bismuth oxide composite and its electrochemical characteristics. Electrochim Acta 55(28), 8974–8980 (2010). https://doi.org/10.1016/j.electacta.2010.08.048

    Article  CAS  Google Scholar 

  82. M. Mahdavian, S. Ashhari, Corrosion inhibition performance of 2-mercaptobenzimidazole and 2-mercaptobenzoxazole compounds for protection of mild steel in hydrochloric acid solution. Electrochim Acta 55(5), 1720–1724 (2010). https://doi.org/10.1016/j.electacta.2009.10.055

    Article  CAS  Google Scholar 

  83. Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6), 3187–3194 (2010). https://doi.org/10.1021/nn100740x

    Article  CAS  PubMed  Google Scholar 

  84. J.X. Hu, J. Gou, M. Yang, G.J. Omar, J.Y. Tan, S.W. Zeng, Y.P. Liu, K. Han, Z.S. Lim, Z. Huang, A.T.S. Wee, A. Ariando, Room-temperature colossal magnetoresistance in terraced single-layer graphene. Adv. Mater. 32, 2002201 (2020). https://doi.org/10.1002/adma.202002201

    Article  CAS  Google Scholar 

  85. L. Viti, A.R. Cadore, X. Yang, A. Vorobiev, J.E. Muench, K. Watanabe, T. Taniguchi, J. Stake, A.C. Ferrari, M.S. Vitiello, Thermoelectric graphene photodetectors with sub-nanosecond response times at terahertz frequencies. Nanophotonics 10(1), 89–98 (2021). https://doi.org/10.1515/nanoph-2020-0255

    Article  CAS  Google Scholar 

  86. H. Azak, Electrochemical hydrogen peroxide nanosensor using a reduced graphene oxide-poly(6-(4H-dithieno[3,2-b:2′,3′-d]pyrrol-4-yl)hexan-1-amine) hybrid-modified electrode. J. Appl. Polym. Sci. 137, 48538 (2020). https://doi.org/10.1002/app.48538

    Article  CAS  Google Scholar 

  87. G. Han, Z. Chen, L. Cai, Y. Zhang, J. Tian, H. Ma, S. Fang, Poly(vinyl alcohol)/carboxyl graphene membranes for ethanol dehydration by pervaporation. Chem. Eng. Technol. 43, 574–581 (2020). https://doi.org/10.1002/ceat.201900149

    Article  CAS  Google Scholar 

  88. M. Dehghan, M. Tahmasebipour, S. Ebrahimi, Design, fabrication, and characterization of an SLA 3D printed nanocomposite electromagnetic microactuator. Microelectron. Eng. 254, 111695 (2022)

    Article  CAS  Google Scholar 

  89. M. Ameri Akhtiar Abadi, M. Masrournia, M. R. Abedi, Simultaneous extraction and preconcentration of benzene, toluene, ethylbenzene and xylenes from aqueous solutions using magnetite–graphene oxide composites. Chem. Methodol. 5(1), 11–20 (2021). https://doi.org/10.22034/chemm.2021.118260

  90. M. Motahharinia, H.A. Zamani, H. Karimi-Maleh, Electrochemical determination of doxorubicin in injection samples using paste electrode amplified with reduced graphene oxide/Fe3O4 nanocomposite and 1-Hexyl-3-methylimidazolium hexafluorophosphate. Chem. Methodol. 5(2), 107–113 (2021). https://doi.org/10.22034/chemm.2021.119678

    Article  CAS  Google Scholar 

  91. A. Moghaddam, H.A. Zamani, H. Karimi-Maleh, A new sensing strategy for determination of tamoxifen using Fe3O4/graphene-ionic liquid nanocomposite amplified paste electrode. Chem. Methodol. 5(5), 373–380 (2021). https://doi.org/10.22034/chemm.2021.135727

    Article  CAS  Google Scholar 

  92. V. Bakhtadze, V. Mosidze, T. Machaladze, N. Kharabadze, D. Lochoshvili, M. Pajishvili et al., Activity of Pd-MnOx/cordierite (Mg, Fe) 2Al4Si5O18) catalyst for carbon monoxide oxidation. Eur. Chem. Bull. 9(2), 75–77 (2020)

    Article  CAS  Google Scholar 

  93. S. Rajeshkumar, A.K. Subramanian, R. Prabhakar, In vitro anti-inflammatory activity of silymarin/hydroxyapatite/chitosan nanocomposites and its cytotoxic effect using brine shrimp lethality assay: nanocomposite for biomedical applications. J. Popul. Therap. Clin. Pharmacol (2021). https://doi.org/10.47750/jptcp.2022.874

  94. A.K. Netam, V.P. Bhargava, R. Singh, P. Sharma, Physico-chemical characterization of ayurvedic swarna bhasma by using SEM, EDAX, XRD and PSA. J. Complement. Med. Res. 12(2), 204–209 (2021). https://doi.org/10.5455/jcmr.2021.12.02.23

    Article  Google Scholar 

  95. S.D. Wani, A. Mundada, A review: emerging trends in bionanocomposites. Int. J. Pharm. Res. Technol. 11(1), 1–8 (2021). https://doi.org/10.31838/ijprt/11.01.01

    Article  Google Scholar 

  96. B. Jahanbin, A. Davoodnia, H. Behmadi, N. Tavakoli-Hoseini, Polymer support immobilized acidic ionic liquid: preparation and its application as catalyst in the synthesis of Hantzsch 1, 4-dihydropyridines. Bull. Korean Chem. Soc. 33(7), 2140–2144 (2012)

    Article  CAS  Google Scholar 

  97. M. Baniasadi, H. Maaref, A. Dorzadeh, P. Mohammad Alizadeh, A sensitive SiO2@Fe3O4/GO nanocomposite modified ionic liquid carbon paste electrode for the determination of cabergoline. Iran. J. Chem. Chem. Eng. (IJCCE) 39(4), 11–22 (2020). https://doi.org/10.30492/ijcce.2020.105268.3508

    Article  CAS  Google Scholar 

  98. S. Rayemi, F. Raeisi, Graphene oxide as a docking station for modern drug delivery system by Ulva lactuca species study its antimicrobial, anti-fungal and anti-blood cancer activity. Adv. Appl. NanoBio-Technol. 1(2), 53–62 (2020)

    Google Scholar 

  99. F.B. Salim, G.P. Shiaka, M. Muhammad, B. Nafisa, M.M. Surayya, A.Y. Sa’adatu, R. Gayus, A.M. Gumel, Influence of reaction temperature on bioethanol production by saccharomyces cerevisiae using cassava as substrate. Int. J. Sustain Energy Environ. Res. 10(1), 9–16 (2021). https://doi.org/10.18488/journal.13.2021.101.9.16

  100. T.-H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M.O. Alassafi, F.E. Alsaadi, Y.-M. Chu, A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 20(1), 160–176 (2021)

    MathSciNet  Google Scholar 

  101. T.-H. Zhao, M.-K. Wang, Y.-M. Chu, On the bounds of the perimeter of an ellipse. Acta Math. Sci. 42B(2), 491–501 (2022). https://doi.org/10.1007/s10473-022-0204-y

    Article  MathSciNet  Google Scholar 

  102. T.-H. Zhao, M.-K. Wang, G.-J. Hai, Y.-M. Chu, Landen inequalities for Gaussian hypergeometric function, Rev. R. Acad. Cienc. Exactas Físicas. Nat. Ser. A Mat. RACSAM, 116(1), Paper No. 53 (2022). https://doi.org/10.1007/s13398-021-01197-y.

  103. M. Nazeer, F. Hussain, M. Ijaz Khan, Asad-ur-Rehman, E. R. El-Zahar, Y.-M. Chu, M.Y. Malik, Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Appl. Math. Comput., 420, Paper No. 126868 (2022). https://doi.org/10.1016/j.amc.2021.126868.

  104. Y.-M. Chu, B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. Ijaz Khan, S. U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface, Appl. Math. Comput. (2022). https://doi.org/10.1016/j.amc.2021.126883.

  105. T.-H. Zhao, M. Ijaz Khan, Y.-M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7310

  106. T.-H. Zhao, Z.-Y. He, Y.-M. Chu, Sharp bounds for the weighted H"{o}lder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 21(3), 413–426 (2021). https://doi.org/10.1007/s40315-020-00352-7

    Article  ADS  MathSciNet  Google Scholar 

  107. T.-H. Zhao, M.-K. Wang, Y.-M. Chu, Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 15(2), 701–724 (2021). https://doi.org/10.7153/jmi-2021-15-50

    Article  MathSciNet  Google Scholar 

  108. T.-H. Zhao, M.-K. Wang, Y.-M. Chu, Monotonicity and convexity involving generalized elliptic integral of the first kind, Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM, 115(2), Paper No. 46 (2021). https://doi.org/10.1007/s13398-020-00992-3

  109. H.-H. Chu, T.-H. Zhao, Y.-M. Chu, Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math. Slovaca 70(5), 1097–1112 (2020). https://doi.org/10.1515/ms-2017-0417

    Article  MathSciNet  Google Scholar 

  110. T.-H. Zhao, Z.-Y. He, Y.-M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math. 5(6), 6479–6495 (2020). https://doi.org/10.3934/math.2020418

    Article  MathSciNet  Google Scholar 

  111. T.-H. Zhao, M.-K. Wang, Y.-M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 5(5), 4512–4528 (2020). https://doi.org/10.3934/math.2020290

    Article  MathSciNet  Google Scholar 

  112. T.-H. Zhao, L. Shi, Y.-M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to H\"{o}lder means, Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM, 114(2), Paper No. 96 (2020). https://doi.org/10.1007/s13398-020-00825-3.

  113. T.-H. Zhao, B.-C. Zhou, M.-K. Wang, Y.-M. Chu, On approximating the quasi-arithmetic mean, J. Inequal. Appl., Paper No. 42 (2019). https://doi.org/10.1186/s13660-019-1991-0.

  114. T.-H. Zhao, M.-K. Wang, W. Zhang, Y.-M. Chu, Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., Paper No. 251 (2018). https://doi.org/10.1186/s13660-018-1848-y.

  115. Y.-M. Chu, T.-H. Zhao, Concavity of the error function with respect to H"{o}lder means. Math. Inequal. Appl. 19(2), 589–595 (2016). https://doi.org/10.7153/mia-19-43

    Article  MathSciNet  Google Scholar 

  116. T.-H. Zhao, Z.-H. Shen, Y.-M. Chu, Sharp power mean bounds for the lemniscate type means, Rev. R. Acad. Cienc. Exactas Físicas. Nat. Ser. A Mat. RACSAM, 115(4), Paper No. 175 (2021). https://doi.org/10.1007/s13398-021-01117-0.

  117. M.-K. Wang, M.-Y. Hong, Y.-F. Xu, Z.-H. Shen, Y.-M. Chu, Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 14(1), 1–21 (2020). https://doi.org/10.7153/jmi-2020-14-01

    Article  MathSciNet  Google Scholar 

  118. H.-Z. Xu, W.-M. Qian, Y.-M. Chu, Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means, Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Mat. RACSAM, 116(1), Paper No. 21 (2022). https://doi.org/10.1007/s13398-021-01162-9.

  119. K. Karthikeyan, P. Karthikeyan, H.M. Baskonus, K. Venkatachalam, Y.-M. Chu, Almost sectorial operators on $\Psi$-Hilfer derivative fractional impulsive integro-differential equations. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7954

    Article  Google Scholar 

  120. Y.-M. Chu, U. Nazir, M. Sohail, M. M. Selim, J-R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. (2021). https://doi.org/10.3390/fractalfract5030119.

  121. S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y.-M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals. (2022). https://doi.org/10.1142/S0218348X22400266.

  122. T.-H. Zhao, W.-M. Qian, Y.-M. Chu, Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 15(4), 1459–1472 (2021). https://doi.org/10.7153/jmi-2021-15-100

    Article  MathSciNet  Google Scholar 

  123. T.-H. Zhao, W.-M. Qian, Y.-M. Chu, On approximating the arc lemniscate functions. Indian J. Pure Appl. Math. (2021). https://doi.org/10.1007/s13226-021-00016-9

    Article  Google Scholar 

  124. S.N. Hajiseyedazizi, M.E. Samei, J. Alzabut, Y.-M. Chu, On multi-step methods for singular fractional q-integro-differential equations. Open Math. 19(1), 1378–1405 (2021). https://doi.org/10.1515/math-2021-0093

    Article  MathSciNet  Google Scholar 

  125. F. Jin, Z.-S. Qian, Y.-M. Chu, M. Rahman, On nonlinear evolution model for drinking behavior under Caputo–Fabrizio derivative. J. Appl. Anal. Comput. 12(2), 790–806 (2022). https://doi.org/10.11948/20210357.

  126. S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y.-M. Chu, Some recent developments on dynamical h-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels. Fractals (2022). https://doi.org/10.1142/S0218348X22401107.

  127. F.-Z. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y.-M. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals (2022). https://doi.org/10.1142/S0218348X22400515.

  128. T.-H. Zhao, B.A. Bhayo, Y.-M. Chu, Inequalities for generalized Gr"{o}tzsch ring function. Comput. Methods Funct. Theory (2021). https://doi.org/10.1007/s40315-021-00415-3

    Article  Google Scholar 

  129. S. Rashid, E. I. Abouelmagd, S. Sultana, Y.-M. Chu, New developments in weighted n-fold type inequalities via discrete generalized h-proportional fractional operators. Fractals (2022). https://doi.org/10.1142/S0218348X22400564.

  130. Y.-M. Chu, S. Bashir, M. Ramzan, M.Y. Malik, Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.8234

    Article  Google Scholar 

  131. W.-M. Qian, H.-H. Chu, M.-K. Wang, Y.-M. Chu, Sharp inequalities for the Toader mean of order $-1$ in terms of other bivariate means. J. Math. Inequal. 16(1), 127–141 (2022). https://doi.org/10.7153/jmi-2022-16-10

    Article  MathSciNet  Google Scholar 

  132. T.-H. Zhao, H.-H. Chu, Y.-M. Chu, Optimal Lehmer mean bounds for the $n$th power-type Toader mean of $n=-1, 1, 3$. J. Math. Inequal. 16(1), 157–168 (2022). https://doi.org/10.7153/jmi-2022-16-12

    Article  MathSciNet  Google Scholar 

  133. T.-H. Zhao, M.-K. Wang, Y.-Q. Dai, Y.-M. Chu, On the generalized power-type Toader mean. J. Math. Inequal. 16(1), 247–264 (2022). https://doi.org/10.7153/jmi-2022-16-18

    Article  MathSciNet  Google Scholar 

  134. S. A. Iqbal, M. G. Hafez, Y.-M. Chu, C. Park, Dynamical analysis of nonautonomous RLC circuit with the absence and presence of Atangana–Baleanu fractional derivative. J. Appl. Anal. Comput. 12(2), 770–789 (2022). https://doi.org/10.11948/20210324.

  135. E. Ashpazzadeh, Y.-M. Chu, M. S. Hashemi, M. Moharrami, M. Inc, Hermite multiwavelets representation for the sparse solution of nonlinear Abel's integral equation, Appl. Math. Comput., 427, Paper No. 127171 (2022). https://doi.org/10.1016/j.amc.2022.127171.

  136. T. Gao, C. Li, Y. Zhang, M. Yang, D. Jia, T. Jin, Y. Hou, R. Li, Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol. Int. 131, 51–63 (2019)

    Article  CAS  Google Scholar 

  137. Y. Zhang, C. Li, D. Jia, B. Li, Y. Wang, M. Yang, Y. Hou, X. Zhang, Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J. Mater. Process. Technol. 232, 100–115 (2016)

    Article  CAS  Google Scholar 

  138. S. Guo, C. Li, Y. Zhang, Y. Wang, B. Li, M. Yang, X. Zhang, G. Liu, Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J. Clean. Prod. 140, 1060–1076 (2017)

    Article  CAS  Google Scholar 

  139. M. Yang, C. Li, Y. Zhang, D. Jia, R. Li, Y. Hou, H. Cao, J. Wang, Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram. Int. 45(12), 14908–14920 (2019)

    Article  CAS  Google Scholar 

  140. J. Zhang, C. Li, Y. Zhang, M. Yang, D. Jia, G. Liu, Y. Hou, R. Li, N. Zhang, Q. Wu, H. Cao, Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J. Clean. Prod. 193, 236–248 (2018)

    Article  CAS  Google Scholar 

  141. B. Li, C. Li, Y. Zhang, Y. Wang, D. Jia, M. Yang, Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin. J. Aeronaut. 29(4), 1084–1095 (2016)

    Article  Google Scholar 

  142. D. Jia, C. Li, D. Zhang, Y. Zhang, X. Zhang, Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding. J. Nanopart. Res. 16(12), 1–15 (2014)

    Article  CAS  Google Scholar 

  143. Y. Zhang, H.N. Li, C. Li, C. Huang, H.M. Ali, X. Xu, C. Mao, W. Ding, X. Cui, M. Yang, T. Yu, M. Jamil, M. K. Gupta, D. Jia, Z. Said. Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction. (2021). https://doi.org/10.1007/s40544-021-0536-y

  144. X. Cui, C.H. Li, W.F. Ding, Y. Chen, C. Mao, X.F. Xu, B. Liu, D.Z. Wang, H.N. Li, Y.B. Zhang, Z. Said, S. Debnath, M. Jamil, H.M. Ali, S. Sharma, Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application. Chin. J. Aeronaut. (2021). https://doi.org/10.1016/j.cja.2021.08.011

    Article  Google Scholar 

  145. M. Liu, C. Li, Y. Zhang, Q. An, M. Yang, T. Gao, C. Mao, B. Liu, H. Cao, X. Xu, Z. Said, S. Debnath, M. Jamil, H.M. Ali, S. Sharma, Cryogenic minimum quantity lubrication machining: from mechanism to application. Front. Mech. Eng. 16(4), 649–697 (2021). https://doi.org/10.1007/s11465-021-0654-2

    Article  Google Scholar 

  146. T. Gao, Y. Zhang, C. Li, Y. Wang, Q. An, Bo. Liu, Z. Said, S. Sharma, Grindability of carbon fiber reinforced polymer using CNT biological lubricant. Sci. Rep. 11, 22535 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  147. T. Gao, C. Li, Y. Wang, X. Liu, Q. An, H.N. Li, Y. Zhang, H. Cao, B. Liu, D. Wang, Z. Said, S. Debnath, M. Jamil, H.M. Ali, S. Sharma, Carbon fiber reinforced polymer in drilling: from damage mechanisms to suppression. Compos. Struct. 286, 115232 (2022)

    Article  CAS  Google Scholar 

  148. Y.Y. Yang, Y.D. Gong, C.H. Li, X.L. Wen, J.Y. Sun, Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process. J. Mater. Process. Technol. 291, 117023 (2021). https://doi.org/10.1016/j.jmatprotec.2020.117023

    Article  CAS  Google Scholar 

  149. Z. Said, S. Arora, S. Farooq, L.S. Sundar, C. Li, A. Allouhi, Recent advances on improved optical, thermal, and radiative characteristics of plasmonic nanofluids: academic insights and perspectives. Sol. Energy Mater. Sol. Cells 236, 111504 (2022)

    Article  CAS  Google Scholar 

  150. A. Ejaz, H. Babar, H.M. Ali, F. Jamil, M.M. Janjua, I.R. Fattah, Z. Said, C. Li, Concentrated photovoltaics as light harvesters: outlook, recent progress, and challenges. Sustain. Energy Technol. Assess. 46, 101199 (2021)

    Google Scholar 

  151. M. Yang, C. Li, Y. Zhang, D. Jia, R. Li, Y. Hou, H. Cao, Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. Int. J. Adv. Manufact. Technol. 102(5), 2617–2632 (2019)

    Article  Google Scholar 

  152. M. Salimi, V. Pirouzfar, E. Kianfar, Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid Polym Sci 295, 215–226 (2017). https://doi.org/10.1007/s00396-016-3998-0

    Article  CAS  Google Scholar 

  153. E. Kianfar, Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether. Russ. J. Appl. Chem. 91, 1711–1720 (2018). https://doi.org/10.1134/S1070427218100208

    Article  CAS  Google Scholar 

  154. E. Kianfar, Ethylene to propylene conversion over Ni-W/ZSM-5 catalyst. Russ. J. Appl. Chem. 92, 1094–1101 (2019). https://doi.org/10.1134/S1070427219080068

    Article  CAS  Google Scholar 

  155. E. Kianfar, M. Salimi, F. Kianfar, M. Kianfar, S.A.H. Razavikia, CO2/N2 separation using polyvinyl chloride iso-phthalic acid/aluminium nitrate nanocomposite membrane. Macromol. Res. 27, 83–89 (2019). https://doi.org/10.1007/s13233-019-7009-4

    Article  CAS  Google Scholar 

  156. E. Kianfar, Ethylene to propylene over zeolite ZSM-5: improved catalyst performance by treatment with CuO. Russ. J. Appl. Chem. 92, 933–939 (2019). https://doi.org/10.1134/S1070427219070085

    Article  CAS  Google Scholar 

  157. E. Kianfar, M. Shirshahi, F. Kianfar, F. Kianfar, Simultaneous prediction of the density, viscosity and electrical conductivity of pyridinium-based hydrophobic ionic liquids using artificial neural network. SILICON 10, 2617–2625 (2018). https://doi.org/10.1007/s12633-018-9798-z

    Article  CAS  Google Scholar 

  158. M. Salimi, V. Pirouzfar, E. Kianfar, Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C2H6/CH4 separation. Polym. Sci. Ser. A 59, 566–574 (2017). https://doi.org/10.1134/S0965545X17040071

    Article  CAS  Google Scholar 

  159. F. Kianfar, E. Kianfar, Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening. J. Inorg. Organomet. Polym. 29, 2176–2185 (2019). https://doi.org/10.1007/s10904-019-01177-1

    Article  CAS  Google Scholar 

  160. E. Kianfar, R. Azimikia, S.M. Faghih, Simple and strong dative attachment of α-diimine nickel (II) catalysts on supports for ethylene polymerization with controlled morphology. Catal. Lett. 150, 2322–2330 (2020). https://doi.org/10.1007/s10562-020-03116-z

    Article  CAS  Google Scholar 

  161. E. Kianfar, Nanozeolites: synthesized, properties, applications. J. Sol-Gel Sci. Technol. 91, 415–429 (2019). https://doi.org/10.1007/s10971-019-05012-4

    Article  CAS  Google Scholar 

  162. H. Liu, E. Kianfar, Investigation the synthesis of nano-SAPO-34 catalyst prepared by different templates for MTO process. Catal Lett 151, 787–802 (2021). https://doi.org/10.1007/s10562-020-03333-6

    Article  CAS  Google Scholar 

  163. E. Kianfar, Nanozeolites: synthesized, properties, applications. J Sol-Gel Sci Technol 91, 415–429 (2019). https://doi.org/10.1007/s10971-019-05012-4

    Article  CAS  Google Scholar 

  164. E. Kianfar, M. Salimi, V. Pirouzfar, B. Koohestani, Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline. Int. J. Appl. Ceram. Technol. 15, 734–741 (2018). https://doi.org/10.1111/ijac.12830

    Article  CAS  Google Scholar 

  165. E. Kianfar, M. Salimi, V. Pirouzfar, B. Koohestani, Synthesis and modification of zeolite ZSM-5 catalyst with solutions of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) for methanol to gasoline conversion. Int. J. Chem. Reactor Eng. 16(7), 20170229 (2018). https://doi.org/10.1515/ijcre-2017-0229

    Article  CAS  Google Scholar 

  166. E. Kianfar, Comparison and assessment of Zeolite Catalysts performance Dimethyl ether and light olefins production through methanol: a review. Rev. Inorg. Chem. 39, 157–177 (2019)

    Article  CAS  Google Scholar 

  167. E. Kianfar, M. Salimi, A review on the production of light olefins from hydrocarbons cracking and methanol conversion: In book: advances in chemistry research, vol 59: Edition: James C. Taylor Chapter: 1 (Nova Science Publishers, Inc., New York, 2020)

  168. E. Kianfar, A. Razavi, Zeolite catalyst based selective for the process MTG: a review: In book: Zeolites: advances in research and applications, Edition: Annett Mahler Chapter: 8 (Nova Science Publishers, Inc., New York, 2020).

  169. E. Kianfar, Zeolites: properties, applications, modification and selectivity: In book: zeolites: advances in research and applications, Edition: Annett Mahler Chapter: 1 (Nova Science Publishers, Inc., New York, 2020)

  170. E. Kianfar, S. Hajimirzaee, S.S. Musavian, A.S. Mehr, Zeolite-based catalysts for methanol to gasoline process: a review. Microchem. J. 104822 (2020)

  171. E. Kianfar, M. Baghernejad, Y. Rahimdashti, Study synthesis of vanadium oxide nanotubes with two template hexadecylamin and hexylamine. Biol. Forum. 7, 1671–1685 (2015)

    Google Scholar 

  172. E. kianfar, Synthesizing of vanadium oxide nanotubes using hydrothermal and ultrasonic method. Lambert Academic Publishing. 1–80 (2020). ISBN: 978-613-9-81541-8.

  173. E. Kianfar, V. Pirouzfar, H. Sakhaeinia, An experimental study on absorption/stripping CO2 using Mono-ethanol amine hollow fiber membrane contactor. J. Taiwan Inst. Chem. Eng. 80, 954–962 (2017)

    Article  CAS  Google Scholar 

  174. E. Kianfar, C. Viet, Polymeric membranes on base of PolyMethyl methacrylate for air separation: a review. J. Market. Res. 10, 1437–1461 (2021)

    CAS  Google Scholar 

  175. S.S.N. Mousavian, P. Faravar, Z. Zarei, R. Zimikia, M.G. Monjezi, E. Kianfar, Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics. J. Environ. Chem. Eng. 8(4), 103946 (2020)

    Article  CAS  Google Scholar 

  176. Z. Yang, L. Zhang, Y. Zhou, H. Wang, L. Wen, E. Kianfar, Investigation of effective parameters on SAPO-34 Nano catalyst the methanol-to-olefin conversion process: a review. Rev. Inorg. Chem. 40(3), 91–105 (2020). https://doi.org/10.1515/revic-2020-0003

    Article  CAS  Google Scholar 

  177. C. Gao, J. Liao, Lu. Jingqiong, J. Ma, E. Kianfar, The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review. Rev. Inorg. Chem. (2020). https://doi.org/10.1515/revic-2020-0007

    Article  Google Scholar 

  178. E. Kianfar, M. Salimi, B. Koohestani, Zeolite CATALYST: a review on the production of light olefins. Lambert Academic Publishing. 1–116 (2020). ISBN:978-620-3-04259-7

  179. E. Kianfar, Investigation on catalysts of “Methanol to light Olefins”. Lambert Academic Publishing. 1–168 (2020). ISBN: 978-620-3-19402-9

  180. E. Kianfar, Application of nanotechnology in enhanced recovery oil and gas importance & applications of nanotechnology. MedDocs Publishers. vol. 5, Chapter 3, pp. 16–21 (2020)

  181. E. Kianfar, Catalytic properties of nanomaterials and factors affecting it importance & applications of nanotechnology. MedDocs Publishers. Vol. 5, Chapter 4, pp. 22–25 (2020)

  182. E. Kianfar, Introducing the application of nanotechnology in lithium-ion battery importance & applications of nanotechnology, MedDocs Publishers. Vol. 4, Chapter 4, pp. 1–7 (2020)

  183. E. Kianfar, H. Mazaheri, Synthesis of nanocomposite (CAU-10-H) thin-film nanocomposite (TFN) membrane for removal of color from the water. Fine Chem. Eng. 1, 83–91 (2020)

    Article  CAS  Google Scholar 

  184. E. Kianfar, Simultaneous prediction of the density and viscosity of the ternary system water-ethanol-ethylene glycol using support vector machine. Fine Chem. Eng. 1, 69–74 (2020)

    Article  CAS  Google Scholar 

  185. E. Kianfar, M. Salimi, B. Koohestani, Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized and influence of water on conversion. Fine Chem. Eng. 1, 75–82 (2020)

    Google Scholar 

  186. E. Kianfar, An experimental study PVDF and PSF hollow fiber membranes for chemical absorption carbon dioxide. Fine Chem. Eng. 1, 92–103 (2020)

    Article  CAS  Google Scholar 

  187. E. Kianfar, S. Mafi, Ionic liquids: properties, application, and synthesis. Fine Chem. Eng. 2, 22–31 (2020)

    Article  Google Scholar 

  188. S.M. Faghih, E. Kianfar, Modeling of fluid bed reactor of ethylene dichloride production in Abadan Petrochemical based on three-phase hydrodynamic model. Int. J. Chem. React. Eng. 16, 1–14 (2018)

    Google Scholar 

  189. E. Kianfar, H. Mazaheri, Methanol to gasoline: a sustainable transport fuel, in book: advances in chemistry research, vol 66, Edition: James C. Taylor Chapter: 4 (Nova Science Publishers, Inc., New York, 2020)

  190. E. Kianfar, A comparison and assessment on performance of zeolite catalyst based selective for the process methanol to gasoline: a review. In advances in chemistry research, Vol. 63, Chapter 2 (Nova Science Publishers, Inc., New York, 2020

  191. E. Kianfar, S. Hajimirzaee, S. M. Faghih, et al, Polyvinyl chloride + nanoparticles titanium oxide membrane for separation of O2/N2. Advances in Nanotechnology (Nova Science Publishers, Inc, New York, 2020)

  192. E. Kianfar, Synthesis of characterization Nanoparticles isophthalic acid / aluminum nitrate (CAU-10-H) using method hydrothermal. Advances in Chemistry Research (Nova Science Publishers, Inc, New York, 2020)

  193. E. Kianfar, CO2 capture with ionic liquids: a review. Advances in Chemistry Research. Volume 67 (Nova Science Publishers, Inc., New York, 2020)

  194. E. Kianfar, Enhanced light olefins production via methanol dehydration over promoted SAPO-34. Advances in Chemistry Research, volume 63, Chapter: 4 (Nova Science Publishers, Inc., New York, 2020)

  195. E. Kianfar, Gas hydrate: applications, structure, formation, separation processes, Thermodynamics. Advances in Chemistry Research. Volume 62, Edition: James C. Taylor. Chapter: 8 (Nova Science Publishers, Inc., New York, 2020)

  196. M. Kianfar, F. Kianfar, E. Kianfar, The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. Am. J. Oil Chem. Technol. 4(1), 29–44 (2016)

    Google Scholar 

  197. E. Kianfar, The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. Am. J. Oil Chem. Technol. 4(1), 27–42 (2016)

    Google Scholar 

  198. F. Kianfar, S. Reza, M. Moghadam, E. Kianfar, Energy optimization of ilam gas refinery unit 100 by using HYSYS refinery software. Indian J. Sci. Technol. 8(S9), 431–436 (2015)

    Article  Google Scholar 

  199. E. Kianfar, Production and identification of vanadium oxide nanotubes. Indian J. Sci. Technol. 8(S9), 455–464 (2015)

    Article  Google Scholar 

  200. F. Kianfar, S. Reza, M. Moghadam, E. Kianfar, Synthesis of Spiro Pyran by using silica-bonded N-propyldiethylenetriamine as recyclable basic catalyst. Indian J. Sci. Technol. 8(11), 68669 (2015)

    Article  Google Scholar 

  201. S. Hajimirzaee, A. S. Mehr, E. Kianfar, Modified ZSM-5 zeolite for conversion of LPG to aromatics. Polycyclic Aromatic Compounds (2020). https://doi.org/10.1080/10406638.2020.1833048.

  202. E. Kianfar, Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins. Pet. Chem. 61, 527–537 (2021). https://doi.org/10.1134/S0965544121050030

    Article  CAS  Google Scholar 

  203. X. Huang, Y. Zhu, E. Kianfar, Nano Biosensors: properties, applications and electrochemical techniques. J. Mater. Res. Technol. 12, 1649–1672 (2021). https://doi.org/10.1016/j.jmrt.2021.03.048

    Article  CAS  Google Scholar 

  204. E. Kianfar, Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnol 19, 159 (2021). https://doi.org/10.1186/s12951-021-00896-3

    Article  CAS  Google Scholar 

  205. E. Kianfar, Magnetic nanoparticles in targeted drug delivery: a review. J. Supercond. Novel Magn. (2020). https://doi.org/10.1007/s10948-021-05932-9

    Article  Google Scholar 

  206. R. Syah, M. Zahar, E. Kianfar, Nanoreactors: properties, applications and characterization. Int. J. Chem. Reactor Eng. (2021). https://doi.org/10.1515/ijcre-2021-0069

    Article  Google Scholar 

  207. H.S. Majdi, Z.A. Latipov, V. Borisov et al., Nano and battery anode: a review. Nanoscale Res. Lett. 16, 177 (2021). https://doi.org/10.1186/s11671-021-03631-x

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  208. D. Bokov, A.T. Jalil, S. Chupradit, W. Suksatan, M.J. Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Nanomaterial by sol–gel method: synthesis and application. Adv. Mater. Sci. Eng. (2021). https://doi.org/10.1155/2021/5102014

    Article  Google Scholar 

  209. M.J. Ansari, M.M. Kadhim, B.A. Hussein et al., Synthesis and stability of magnetic nanoparticles. BioNanoSci. (2022). https://doi.org/10.1007/s12668-022-00947-5

    Article  Google Scholar 

  210. S. Chupradit, M. Kavitha, W. Suksatan, M. J. Ansari, Z. I. Al Mashhadani, M. M. Kadhim, Y. F. Mustafa, S. S. Shafik, E. Kianfar, Morphological control: properties and applications of metal nanostructures. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/1971891.

  211. O.D. Salah Aldeen, M.Z. Mahmoud, H.S. Majdi, D.A. Mutlak, K. Fakhriddinovich Uktamov, Investigation of effective parameters Ce and Zr in the synthesis of H-ZSM-5 and SAPO-34 on the production of light olefins from naphtha. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/6165180

    Article  Google Scholar 

  212. A. Suryatna, I. Raya, L. Thangavelu, F.R. Alhachami, M.M. Kadhim, U.S. Altimari, Z.H. Mahmoud, Y.F. Mustafa, E. Kianfar, A review of high-energy density lithium-air battery technology: investigating the effect of oxides and nanocatalysts. J. Chem. (2022). https://doi.org/10.1155/2022/2762647

    Article  Google Scholar 

  213. W.K. Abdelbasset, S.A. Jasim, D.O. Bokov et al., Comparison and evaluation of the performance of graphene-based biosensors. Carbon Lett. (2022). https://doi.org/10.1007/s42823-022-00338-6

    Article  Google Scholar 

  214. S.A. Jasim, M.M. Kadhim, V. Kn et al., Molecular junctions: introduction and physical foundations, nanoelectrical conductivity and electronic structure and charge transfer in organic molecular junctions. Braz. J. Phys. 52, 31 (2022). https://doi.org/10.1007/s13538-021-01033-z

    Article  ADS  CAS  Google Scholar 

  215. N.D. Trung, D.T.N. Huy, M. Opulencia et al., Conductive gels: properties and applications of nanoelectronics. Nanoscale Res. Lett. 17, 50 (2022). https://doi.org/10.1186/s11671-022-03687-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  216. J. Shi, Y. Zhao, J. He, T. Li, F. Zhu, W. Tian, X. Liu, Deferred polarization saturation boosting superior energy-storage efficiency and density simultaneously under moderate electric field in relaxor ferroelectrics. ACS Appl. Energy Mater. (2022). https://doi.org/10.1021/acsaem.1c04017

    Article  Google Scholar 

  217. J. He, X. Liu, Y. Zhao, H. Du, T. Zhang, J. Shi, Dielectric stability and energy-storage performance of BNT-based relaxor ferroelectrics through Nb5+ and its excess modification. ACS Appl. Electr. Mater. (2022). https://doi.org/10.1021/acsaelm.1c01129

    Article  Google Scholar 

  218. X. Zhang, Y. Tang, F. Zhang, C. Lee, A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016). https://doi.org/10.1002/aenm.201502588

    Article  CAS  Google Scholar 

  219. X. Tong, F. Zhang, B. Ji, M. Sheng, Y. Tang, Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv. Mater. (Weinheim) 28(45), 9979–9985 (2016). https://doi.org/10.1002/adma.201603735

    Article  CAS  Google Scholar 

  220. B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. (Weinheim) 29(19), 1700519 (2017). https://doi.org/10.1002/adma.201700519

    Article  CAS  Google Scholar 

  221. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H. Cheng, Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10(6), 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4

    Article  CAS  PubMed  Google Scholar 

  222. Z. Ma, L. Zhang, X. Ma, F. Shi, A dual strategy for synthesizing crystal plane/defect co-modified BiOCl microsphere and photodegradation mechanism insights. J. Colloid Interface Sci. 617, 73–83 (2022). https://doi.org/10.1016/j.jcis.2022.02.082

    Article  ADS  CAS  PubMed  Google Scholar 

  223. G. Wang, D. Liu, S. Fan, Z. Li, J. Su, High-k erbium oxide film prepared by sol-gel method for low-voltage thin-film transistor. Nanotechnology 32(21), 215202 (2021). https://doi.org/10.1088/1361-6528/abe439

    Article  ADS  CAS  Google Scholar 

  224. H. Yan, M. Zhao, X. Feng, S. Zhao, X. Zhou, S. Li, C. Yang, PO43- coordinated robust single-atom platinum catalyst for selective polyol oxidation. Angewandte Chemie-Int. Edn. (2022). https://doi.org/10.1002/ange.202116059

    Article  Google Scholar 

  225. W. Lai, W. Wong, Use of graphene-based materials as carriers of bioactive agents. Asian J. Pharm. Sci. 16(5), 577–588 (2021). https://doi.org/10.1016/j.ajps.2020.11.004

    Article  ADS  PubMed  Google Scholar 

  226. S.R. Obireddy, W. Lai, Multi-component hydrogel beads incorporated with reduced graphene oxide for pH-responsive and controlled co-delivery of multiple agents. Pharmaceutics 13(3), 313 (2021). https://doi.org/10.3390/pharmaceutics13030313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. X. Lang, T. Wang, Z. Wang, L. Li, C. Yao, K. Cai, Reasonable design of a V2O5-x/TiO2 active interface structure with high polysulfide adsorption energy for advanced lithium-sulfur batteries. Electrochimica acta 403, 139723 (2022). https://doi.org/10.1016/j.electacta.2021.139723

    Article  CAS  Google Scholar 

  228. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)

    Article  CAS  PubMed  Google Scholar 

  229. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  230. Y. He, L. Huang, J.S. Cai, X.M. Zheng, S.G. Sun, Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries. Electrochim Acta. 55, 1140–1144 (2010). https://doi.org/10.1016/j.electacta.2009.10.014

    Article  CAS  Google Scholar 

  231. W. Wei, J. Wang, L. Zhou, J. Yang, B. Schumann, Y. Nuli, CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochem. Commun. 13, 399–402 (2011). https://doi.org/10.1016/j.elecom.2011.02.001

    Article  CAS  Google Scholar 

  232. S.W. Kim, J. Ryu, C.B. Park, K. Kang, Carbon nanotube-amorphous FePO4core-shell nanowires as cathode material for Li ion batteries. Chem. Commun. 46, 7409–7411 (2010). https://doi.org/10.1039/c0cc02524k

    Article  CAS  Google Scholar 

  233. Y. Chen, L. Du, P. Yang, P. Sun, X. Yu, W. Mai, Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. J. Power Sources 287, 68–74 (2015). https://doi.org/10.1016/J.JPOWSOUR.2015.04.026

    Article  ADS  CAS  Google Scholar 

  234. J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang, M. Zhu et al., High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27, 230–237 (2016). https://doi.org/10.1016/J.NANOEN.2016.07.008

    Article  CAS  Google Scholar 

  235. H. Choi, H. Kim, S. Hwang, W. Choi, M. Jeon, Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrodeSol. Energy Mater. Sol. Cells. 95, 323–325 (2011). https://doi.org/10.1016/J.SOLMAT.2010.04.044

    Article  CAS  Google Scholar 

  236. C.-T. Hsieh, B.-H. Yang, J.-Y. Lin, One- and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells. Carbon N. Y. 49, 3092–3097 (2011). https://doi.org/10.1016/J.CARBON.2011.03.031

    Article  CAS  Google Scholar 

  237. Z.S. Wu, W. Ren, L. Xu, F. Li, H.M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano (2011). https://doi.org/10.1021/nn2006249

    Article  PubMed  PubMed Central  Google Scholar 

  238. H. Wang, L.F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978–13980 (2010). https://doi.org/10.1002/celc.201700093

    Article  CAS  PubMed  Google Scholar 

  239. Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11, 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332

    Article  CAS  PubMed  Google Scholar 

  240. S. Casaluci, M. Gemmi, V. Pellegrini, A. Di Carlo, F. Bonaccorso, Graphene-based large area dye-sensitized solar cell modules. Nanoscale 8, 5368–5378 (2016). https://doi.org/10.1039/c5nr07971c

    Article  ADS  CAS  PubMed  Google Scholar 

  241. H.Y. Wang, H. Hui, Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. 5, 8182–8188 (2012). https://doi.org/10.1016/j.matlet.2012.07.006

    Article  CAS  Google Scholar 

  242. G.S. Han, Y.H. Song, Y.U. Jin, J.W. Lee, N.G. Park, B.K. Kang et al., Reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells. ACS Appl. Mater. Interfaces 7, 23521–23526 (2015). https://doi.org/10.1021/acsami.5b06171

    Article  CAS  PubMed  Google Scholar 

  243. G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai et al., Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 26, 2676–2682 (2014). https://doi.org/10.1002/adma.201304756

    Article  CAS  PubMed  Google Scholar 

  244. L. Yu, L. Hu, B. Anasori, Y. Liu, Q. Zhu, P. Zhang et al., MXene-bonded activated carbon as a flexible. ACS Energy Lett. 3, 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718

    Article  CAS  Google Scholar 

  245. Z. Wang, J.J. Han, N. Zhang et al., Synthesis of polyaniline/graphene composite and its application in zinc-rechargeable batteries. J Solid State Electrochem 23, 3373–3382 (2019). https://doi.org/10.1007/s10008-019-04435-x

    Article  CAS  Google Scholar 

  246. L. Feng, S. Zhang, Z. Liu, Graphene based gene transfection. Nanoscale 3, 1252–1257 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  247. C. Chen, P.J. Perdomo, M. Fernandez, A. Barbeito, C. Wang, Porous NiO/graphene composite thin films as high-performance anodes for lithium-ion batteries. J. Energy Storage 8, 198–204 (2016). https://doi.org/10.1016/J.EST.2016.08.008

    Article  Google Scholar 

  248. R.B. Ambade, S.B. Ambade, N.K. Shrestha, Y.C. Nah, S.H. Han, W. Lee et al., Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodes. Chem. Commun. 49, 2308–2310 (2013). https://doi.org/10.1039/c3cc00065f

    Article  CAS  Google Scholar 

  249. J. Zhang, X. Yang, Y. He, Y. Bai, L. Kang, H. Xu et al., δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor. J. Mater. Chem. A. 4, 9088–9096 (2016). https://doi.org/10.1039/c6ta02989b

    Article  CAS  Google Scholar 

  250. M.E. Speer, M. Kolek, J.J. Jassoy, J. Heine, M. Winter, P.M. Bieker et al., Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. Chem. Commun. 51, 15261–15264 (2015). https://doi.org/10.1039/c5cc04932f

    Article  CAS  Google Scholar 

  251. W.A. Maza, A.J. Haring, S.R. Ahrenholtz, C.C. Epley, S.Y. Lin, A.J. Morris, Ruthenium(II)-polypyridyl zirconium(IV) metal-organic frameworks as a new class of sensitized solar cells. Chem. Sci. 7, 719–727 (2015). https://doi.org/10.1039/c5sc01565k

    Article  PubMed  PubMed Central  Google Scholar 

  252. Y. He, L. Huang, J.S. Cai, X.M. Zheng, S.G. Sun, Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium batteries. Electrochim. Acta. 55, 1140–1144 (2010). https://doi.org/10.1016/j.electacta.2009.10.014.

  253. H.-J. Shin, S.S. Jeon, S.S. Im, CNT/PEDOT core/shell nanostructures as a counter electrode for dye-sensitized solar cells. Synth. Met. 161, 1284–1288 (2011). https://doi.org/10.1016/J.SYNTHMET.2011.04.024

    Article  CAS  Google Scholar 

  254. E. Shi, L. Zhang, Z. Li, P. Li, Y. Shang, Y. Jia et al., TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci. Rep. 2, 8–12 (2012). https://doi.org/10.1038/srep00884

    Article  CAS  Google Scholar 

  255. X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton et al., High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745–2750 (2012). https://doi.org/10.1021/nl204414u

    Article  ADS  CAS  PubMed  Google Scholar 

  256. R.R. Salunkhe, Y. Kamachi, N.L. Torad, S.M. Hwang, Z. Sun, S.X. Dou et al., Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A. 2, 19848–19854 (2014). https://doi.org/10.1039/c4ta04277h

    Article  CAS  Google Scholar 

  257. Y.C. Jeong, J.H. Kim, S.H. Kwon, J.Y. Oh, J. Park, Y. Jung et al., Rational design of exfoliated 1T MoS2@CNT-based bifunctional separators for lithium sulfur batteries. J. Mater. Chem. A. 5, 23909–23918 (2017). https://doi.org/10.1039/c7ta08153g

    Article  CAS  Google Scholar 

  258. Q. Luo, H. Ma, F. Hao, Q. Hou, J. Ren, L. Wu et al., Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv. Funct. Mater. 27, 1–8 (2017). https://doi.org/10.1002/adfm.201703068

    Article  ADS  CAS  Google Scholar 

  259. A. Shrestha, M. Batmunkh, C.J. Shearer, Y. Yin, G.G. Andersson, J.G. Shapter et al., Nitrogen-doped CNx/CNTs heteroelectrocatalysts for highly efficient dye-sensitized solar cells. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201602276

    Article  Google Scholar 

  260. J. Gong, Z. Zhou, K. Sumathy, H. Yang, Q. Qiao, Activated graphene nanoplatelets as a counter electrode for dye-sensitized solar cells. J. Appl. Phys. (2016). https://doi.org/10.1063/1.4945375

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ODS, HS, RS, RMRP, MAT, ATJ, SEI, ATH, LABA, EK: investigation, concept and design, experimental studies, writing—original draft, reviewing and editing. All authors read and approved the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ehsan Kianfar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving humans and animals statement

Omar Dheyauldeen Salahdin, Hamidreza Sayadi, Reena Solanki, Rosario Mireya Romero Parra, Mohaimen Al-Thamir, Abduladheem Turki Jalil, Samar Emad Izzat, Ali Thaeer Hammid, Luis Andres Barboza Arenas, Ehsan Kianfar: Investigation, concept and design, experimental studies, writing — original draft, reviewing and editing.

Ethics approval and consent to participate

We consider that the submitted is original and unique work and it has not been submitted to another journal simultaneity. The work is a single study and it is not into several parts, and results are presented clearly, honestly, and without, falsification or inappropriateness of the data manipulation. The study submitted is part of my doctoral thesis. The authors declare no conflict of interest. The funders had no role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results. This work does not contain any studies with human participants or animals performed by any of the authors. Finally, additional informed consent was obtained from all individual participants for whom identifying information is included in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s00339-024-07401-1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahdin, O.D., Sayadi, H., Solanki, R. et al. RETRACTED ARTICLE: Graphene and carbon structures and nanomaterials for energy storage. Appl. Phys. A 128, 703 (2022). https://doi.org/10.1007/s00339-022-05789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05789-2

Keywords

Navigation