Skip to main content
Log in

Melting of gold by ultrashort laser pulses: advanced two-temperature modeling and comparison with surface damage experiments

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The ultrafast-laser-induced solid–liquid phase transition in metals is still not clearly understood and its accurate quantitative description remains a challenge. Here, we systematically investigated, both experimentally and theoretically, the melting of gold by single femto- and picosecond near-infrared laser pulses. Two laser systems with wavelengths of 800 and 1030 nm and pulse durations ranging from 124 fs to 7 ps were used, and the damage and ablation thresholds were determined for each irradiation condition. The theoretical analysis was based on two-temperature modeling. Different expressions for the electron–lattice coupling rate and contribution of ballistic electrons were examined. In addition, the number of free electrons involved in the optical response is suggested to be dependent on the laser intensity and the influence of the fraction of involved electrons on the damage threshold was investigated. Only one combination of modelling parameters was able to describe consistently all the measured damage thresholds. Physical arguments are presented to explain the modeling results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Wallace, Picosecond and femtosecond fiber lasers serve industry and science. Laser Focus World 56, 27–29 (2020)

    Google Scholar 

  2. R. Stoian, J.-P. Colombier, Advances in ultrafast laser structuring of materials at the nanoscale. Nanophotonics 9, 4665–4688 (2020)

    Article  Google Scholar 

  3. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Optical ablation by high-power short-pulse lasers. J. Opt. Soc. Am. B 13, 459–468 (1996)

    Article  ADS  Google Scholar 

  4. S.-S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias, The role of electron–phonon coupling in femtosecond laser damage of metals. Appl. Phys. A 69, S99–S107 (1999)

    Google Scholar 

  5. S.V. Starinskiy, Y.G. Shukhov, A.V. Bulgakov, Laser-induced damage thresholds of gold, silver and their alloys in air and water. Appl. Surf. Sci. 396, 1765–1774 (2017)

    Article  ADS  Google Scholar 

  6. P. Balling, Laser coupling and relaxation of the absorbed energy: metals, semiconductors, and dielectrics, in Handbook of Laser Micro- and Nano-Engineering. ed. by K. Sugioka (Springer, Cham, 2021). https://doi.org/10.1007/978-3-319-69537-2_10-1

    Chapter  Google Scholar 

  7. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emmision from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 39, 375–377 (1974)

    ADS  Google Scholar 

  8. B. Rethfeld, D.S. Ivanov, M.E. Garcia, S.I. Anisimov, Modelling ultrafast laser ablation. J. Phys. D: Appl. Phys. 50, 193001 (2017)

    Article  ADS  Google Scholar 

  9. M.V. Shugaev, M. He, S.A. Lizunov, Y. Levy, T.J.-Y. Derrien, V.P. Zhukov, N.M. Bulgakova, L.V. Zhigilei, Chapter 5, Insights into laser-materials interaction through modeling on atomic and macroscopic Scales, in Advances in the Application of Lasers in Materials Science, Springer Series in Materials Science, vol. 274, ed. by P.M. Ossi (Springer, 2018), pp. 107–148

    Google Scholar 

  10. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, 2004)

    MATH  Google Scholar 

  11. B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65, 214303 (2002)

    Article  ADS  Google Scholar 

  12. B.Y. Mueller, B. Rethfeld, Relaxation dynamics in laser-excited metals under nonequilibrium conditions. Phys. Rev. B 87, 035139 (2013)

    Article  ADS  Google Scholar 

  13. L. Jiang, H.-L. Tsai, Improved two-temperature model and its application in ultrashort laser heating of metal films. J. Heat Transfer 127, 1167–1173 (2005)

    Article  Google Scholar 

  14. K.P. Migdal, D.K. Il’nitsky, Yu.V. Petrov, N.A. Inogamov, Equations of state, energy transport and two-temperature hydrodynamic simulations for femtosecond laser irradiated copper and gold. J. Phys. Conf. Ser. 653, 012086 (2015)

    Article  Google Scholar 

  15. J. Winter, S. Rapp, M. Schmidt, H.P. Huber, Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties. Appl. Surf. Sci. 417, 2–15 (2017)

    Article  ADS  Google Scholar 

  16. G.D. Tsibidis, The influence of dynamical change of optical properties on the thermomechanical response and damage threshold of noble metals under femtosecond laser irradiation. Phys. Rev. B 123, 085903 (2018)

    Google Scholar 

  17. Z. Lin, L.V. Zhigilei, V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium Phys. Rev. B 77, 075133 (2008)

    Article  Google Scholar 

  18. M.Z. Mo, Z. Chen, R.K. Li, M. Dunning, B.B.L. Witte, J.K. Baldwin, L.B. Fletcher, J.B. Kim, A. Ng, R. Redmer, A.H. Reid, P. Shekhar, X.Z. Shen, M. Shen, K. Sokolowski-Tinten, Y.Y. Tsui, Y.Q. Wang, Q. Zheng, X.J. Wang, S.H. Glenzer, Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction. Science 360, 1451–1455 (2018)

    Article  ADS  Google Scholar 

  19. N.A. Inogamov, Y.V. Petrov, Thermal conductivity of metals with hot electrons. JETP 110, 446–468 (2010)

    Article  ADS  Google Scholar 

  20. S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Femtosecond electronic heat-transport dynamics in thin gold films. Phys. Rev. Lett. 59, 1962–1965 (1987)

    Article  ADS  Google Scholar 

  21. J. Güdde, J. Hohlfeld, J.G. Müller, E. Mattias, Damage threshold dependence on electron-phonon coupling in Au and Ni films. Appl. Surf. Sci. 127–129, 40–45 (1998)

    Article  ADS  Google Scholar 

  22. X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, Z. Zhang, Parametric study on femtosecond laser pulse ablation of Au films. Appl. Surf. Sci. 253, 1616–1619 (2006)

    Article  ADS  Google Scholar 

  23. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, Femtosecond laser ablation behaviour of gold, crystalline silicon, and fused silica: a comparative study. Laser Phys. 24, 106102 (2014)

    Article  ADS  Google Scholar 

  24. A.A. Ionin, S.I. Kudryashov, S.V. Makarov, A.O. Levchenko, A.A. Rudenko, I.N. Saraeva, D.A. Zayarny, C.R. Nathala, W. Husinsky, Nanoscale surface boiling in sub-threshold damage and above-threshold spallation of bulk aluminium and gold by single femtosecond laser pulses. Laser Phys. Lett. 13, 025603 (2016)

    Article  ADS  Google Scholar 

  25. Y.J. Li, X.L. Liu, B.B. Sun, Measurement of ultrafast laser damage threshold on optical materials. Proc. SPIE 11562, 115620T (2020)

    Google Scholar 

  26. G. de Haan, J. Hernandez-Rueda, P.C.M. Planken, Femtosecond time-resolved pump-probe measurements on percolated gold in the ablation regime. Opt. Express 28, 12093–12107 (2020)

    Article  ADS  Google Scholar 

  27. H.E. Bennett, J.O. Porteus, Relation between surface roughness and specular reflectance at normal incidence. J. Opt. Soc. Am. 51, 123–129 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  28. C.-D. Wen, I. Mudawar, Modeling the effects of surface roughness on the emissivity of aluminum alloys. Int. J. Heat Mass Transf. 49, 4279–4289 (2006)

    Article  Google Scholar 

  29. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985)

    Google Scholar 

  30. A.V. Bulgakov, I. Mirza, N.M. Bulgakova, V.P. Zhukov, R. Machulka, O. Haderka, E.E.B. Campbell, T. Mocek, Initiation of air ionization by ultrashort laser pulses: evidence for a role of metastable–state air molecules. J. Phys. D: Appl. Phys. 51, 25LT02 (2018)

    Article  Google Scholar 

  31. N.M. Bulgakova, V.P. Zhukov, A.Y. Vorobyev, C. Guo, Modeling of residual thermal effect in femtosecond laser ablation of metals: role of a gas environment. Appl. Phys. A 92, 883–889 (2008)

    Article  ADS  Google Scholar 

  32. J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7, 196–198 (1982)

    Article  ADS  Google Scholar 

  33. S.V. Starinskiy, A.A. Rodionov, Y.G. Shukhov, E.A. Maximovskiy, A.V. Bulgakov, Dynamics of nanosecond-laser-induced melting of tin in vacuum, air, and water. Appl. Phys. A 125, 734 (2019)

    Article  ADS  Google Scholar 

  34. S. Preuss, A. Demchuk, M. Stuke, Sub-picosecond UV laser ablation of metals. Appl. Phys. A 61, 33–37 (1995)

    Article  ADS  Google Scholar 

  35. M.I. Kaganov, I.M. Lifshitz, M.V. Tanatarov, Relaxation between electrons and the crystalline lattice. Sov. Phys. JETP 4, 173–178 (1957)

    MATH  Google Scholar 

  36. R.H.M. Groeneveld, R. Sprik, A. Lagendijk, Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys. Rev. B 51, 11433 (1995)

    Article  ADS  Google Scholar 

  37. C. Suárez, W.E. Bron, T. Juhasz, Dynamics and transport of electronic carriers in thin gold films. Phys. Rev. Lett. 75, 4536–4539 (1995)

    Article  ADS  Google Scholar 

  38. J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, E. Matthias, Electron and lattice dynamics following optical excitation of metals. Chem. Phys. 251, 237–258 (2000)

    Article  Google Scholar 

  39. J.K. Chen, J.E. Beraun, C.L. Tham, Investigation of thermal response caused by pulsed laser heating. Numer. Heat Transf. A 44, 705–722 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. J. Bonse for providing the bulk gold target. This work was supported by the European Regional Development Fund and the state budget of the Czech Republic (Project BIATRI: No. CZ.02.1.01/0.0/0.0/15_003/0000445). S. A. L. and A. V. B. also acknowledge financial support from the Russian Foundation for Basic Research (Project No. 19-38-90203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda M. Bulgakova.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizunov, S.A., Bulgakov, A.V., Campbell, E.E.B. et al. Melting of gold by ultrashort laser pulses: advanced two-temperature modeling and comparison with surface damage experiments. Appl. Phys. A 128, 602 (2022). https://doi.org/10.1007/s00339-022-05733-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05733-4

Keywords

Navigation