Skip to main content
Log in

Investigation on magnetic critical behavior related to its magnetocaloric effect in Mn0.5Zn0.5Fe2O4 spinel ferrite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we have explored the magnetic critical behavior of Mn0.5Zn0.5Fe2O4 spinel ferrite related to their magnetocaloric properties. The X-ray diffraction analysis shows the sample crystallizes in the cubic system with Fd3m space group. The magnetization versus temperature measurement shows that the sample exhibits a paramagnetic (PM)-to-ferromagnetic (FM) transition at Curie temperature, TC ~ 345 K. Additionally, Arrott plots and Landau theory were also studied to assess magnetic phase ordering in the present compound, and such investigations indicate that the phase transition from the PM to FM states is of second order. The maximum magnetic entropy change, \(\left|{\Delta S}_{M}^{\mathrm{max}}\right|\) ~ 1.1 Jkg−1 K−1 and refrigeration capacity, RC ~ 116 Jkg−1 were observed under the applied field of H = 25 kOe. Also, an excellent agreement has been found between the magnetic entropy change estimated by the Landau theory and those obtained using the classical Maxwell relation. The critical behavior of the Mn0.5Zn0.5Fe2O4 has been studied by means of modified Arrott plot, Kouvel–Fisher method, critical isotherm, and Widom scaling. The as-obtained critical exponents [β = 0.51 and γ = 1.11 for MAP, β = 0.48 and γ = 1.07 for KF] indicate that the critical behavior of the present compound is close to the mean-field model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Wang, Y. Ying, J. Zheng, W. Li, L. Qiao, W. Cai, J. Li, S. Che, Ceram. Int. 47, 21425 (2021). https://doi.org/10.1016/j.ceramint.2021.04.152

    Article  Google Scholar 

  2. C. Wang, N. Zhao, Y. Huang, R. He, S. Xu, W. Yuan, Chem. Eng. J. 401, 126100 (2020). https://doi.org/10.1016/j.cej.2020.126100

    Article  Google Scholar 

  3. S. Mori, T. Mitsuoka, K. Sugimura, R. Hirayama, M. Sonehara, T. Sato, N. Matsushita, Adv. Powder Technol. 29, 1481 (2018). https://doi.org/10.1016/j.saa.2021.119607

    Article  Google Scholar 

  4. R. Felhi, H. Omrani, M. Koubaa, W.C. Koubaa, A. Cheikhrouhou, J. Alloys Compd. 758, 237 (2018). https://doi.org/10.1016/j.jallcom.2018.05.078

    Article  Google Scholar 

  5. M.S. Anwar, F. Ahmed, B.H. Koo, Acta Mater. 71, 100 (2014). https://doi.org/10.1016/j.actamat.2014.03.002

    Article  ADS  Google Scholar 

  6. F. Alam, M.L. Rahman, B.C. Das, A.K.M.A. Hossain, Phys. B Condens. Matter 594, 412329 (2020). https://doi.org/10.1016/j.physb.2020.412329

    Article  Google Scholar 

  7. B. Rezaei, A. Kermanpur, S. Labbaf, J. Magn. Magn. Mater. 481, 16 (2019). https://doi.org/10.1016/j.jmmm.2019.02.085

    Article  ADS  Google Scholar 

  8. P. Lekkla, P. Jantaratana, Solid State Commun. 342, 114628 (2022). https://doi.org/10.1016/j.ssc.2021.114628

    Article  Google Scholar 

  9. T.K. Bhowmik, Phys. Lett. A 419, 127724 (2021). https://doi.org/10.1016/j.physleta.2021.127724

    Article  Google Scholar 

  10. I. Hussain, M.S. Anwar, S.N. Khan, J.W. Kim, K.C. Chung, B.H. Koo, J. Alloys Compd. 694, 815 (2017). https://doi.org/10.1016/j.jallcom.2016.10.073

    Article  Google Scholar 

  11. J.H. Chen, N.M. Bruno, Z. Ning, W.A. Shelton, I. Karaman, Y. Huang, J. Li, J.H. Ross Jr., J. Alloys Compd. 744, 785 (2018). https://doi.org/10.1016/j.jallcom.2018.02.050

    Article  Google Scholar 

  12. S. Swathi, K. Arun, U.D. Remya, A. Dzubinska, M. Reiffers, R. Nagalakshmi, Intermetallics 132, 107164 (2021). https://doi.org/10.1016/j.intermet.2021.107164

    Article  Google Scholar 

  13. O. Tegus, E. Brück, K.H.J. Buschow, F.R. De Boer, Nature 415, 150 (2002). https://doi.org/10.1038/415150a

    Article  ADS  Google Scholar 

  14. J. Lai, B. Huang, X. Miao, N.V. Thang, X. You, M. Maschek, L.V. Eijck, D. Zeng, N.V. Dijk, E. Brück, J. Alloys Compd. 803, 671 (2019). https://doi.org/10.1016/j.jallcom.2019.06.239

    Article  Google Scholar 

  15. P. Gębara, A.D. Garcia, J.Y. Law, V. Franco, J. Magn. Magn. Mater. 500, 166175 (2020). https://doi.org/10.1016/j.jmmm.2019.166175

    Article  Google Scholar 

  16. Q. Wang, L.L. Pan, B.Z. Tang, D. Ding, L. Xia, J. Non-Cryst, Solids 580, 121394 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121394

    Article  Google Scholar 

  17. R. Gimenes, M.R. Baldissera, M.R.A. da Silva, C.A. da Silveira, D.A.W. Soares, L.A. Perazolli, M.R. da Silva, M.A. Zaghete, Ceram. Int. 38, 741 (2012). https://doi.org/10.1016/j.ceramint.2011.07.066

    Article  Google Scholar 

  18. S. Bahhar, A. Boutahar, L.H. Omari, H. Lemziouka, E.K. Hlil, H. Bioud, E. Dhahri, J. Magn. Magn. Mater. 539, 168416 (2021). https://doi.org/10.1016/j.jmmm.2021.168416

    Article  Google Scholar 

  19. S. Othmani, R. Blel, M. Bejar, M. Sajieddine, E. Dhahri, E.K. Hlil, Solid State Commun. 149, 969 (2009). https://doi.org/10.1016/j.ssc.2009.04.020

    Article  ADS  Google Scholar 

  20. P. Gebara, M. Hasiak, Materials 14, 1–12 (2021). https://doi.org/10.3390/ma14010185

    Article  Google Scholar 

  21. M.A. Almessiere, S. Guner, Y. Slimani, A. Baykal, S.E. Shirsath, A.D. Korkmaz, R. Badar, A. Manikandan, J. Mol. Struct. 1248, 131412 (2022). https://doi.org/10.1016/j.molstruc.2021.131412

    Article  Google Scholar 

  22. B.D. Cullity, Element of X-ray diffraction, 2nd edn. (Addison-Wesley, London, 1978)

    MATH  Google Scholar 

  23. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, Ceram. Int. 46, 15740 (2020). https://doi.org/10.1016/j.ceramint.2020.03.287

    Article  Google Scholar 

  24. H. Xie, L. Zhang, Z. Mo, Q. Fu, X. Gao, Z. Li, Q. Liu, J. Shen, J. Alloys Compd. 908, 164583 (2022). https://doi.org/10.1016/j.jallcom.2022.164583

    Article  Google Scholar 

  25. I.Z. Al-Yahmadi, A. Gismelssed, I.A.A. Latif, F.A. Mamari, A.A. Rawas, S.A. Harthi, I.A.A. Omari, A. Yousf, H. Widatallah, M. Elzain, M.T.Z. Myint, J. Alloys Compd. 857, 157566 (2021). https://doi.org/10.1016/j.jallcom.2020.157566

    Article  Google Scholar 

  26. M.S. Anwar, S. Kumar, F. Ahmed, N. Arshi, G.W. Kim, B.H. Koo, J. Korean Phys. Soc. 60, 1587 (2012). https://doi.org/10.3938/jkps.60.1587

    Article  ADS  Google Scholar 

  27. N.H. van Dijk, J. Magn. Magn. Mater. 529, 167871 (2021). https://doi.org/10.1016/j.jmmm.2021.167871

    Article  Google Scholar 

  28. S.K. Banerjee, Phys. Lett. 12, 16 (1964). https://doi.org/10.1016/0031-9163(64)91158-8

    Article  ADS  Google Scholar 

  29. M. Hsini, L. Ghivelder, F. Parisi, J. Magn. Magn. Mater. 535, 168059 (2021). https://doi.org/10.1016/j.jmmm.2021.168059

    Article  Google Scholar 

  30. N. Ameur, M. Triki, E. Dhahri, E.K. Hlil, Solid State Commun. 292, 40 (2019). https://doi.org/10.1016/j.ssc.2019.01.020

    Article  ADS  Google Scholar 

  31. I.N. Bhatti, R.N. Mahato, I.N. Bhatti, M.A.H. Ahsan, Phys. B: Condens. Matter 558, 59 (2019). https://doi.org/10.1016/j.physb.2019.01.028

    Article  ADS  Google Scholar 

  32. J. Zhao, X. Liu, X. Kan, C. Liu, W. Wang, J. Hu, Q. Lv, J. Huang, M. Shazeda, Ceram. Int. 47, 7906 (2021). https://doi.org/10.1016/j.ceramint.2020.11.138

    Article  Google Scholar 

  33. M. Oumezzine, O. Pena, S. Kallel, M. Oumezzine, J. Alloys Compd. 539, 116 (2012). https://doi.org/10.1016/j.jallcom.2012.06.043

    Article  Google Scholar 

  34. N. Assoudi, M. Smari, I. Walha, E. Dhahri, S. Shevyrtalov, O. Dikaya, V. Rodionova, Chem. Phys. Lett. 706, 82 (2018). https://doi.org/10.1016/j.cplett.2018.06.008

    Article  Google Scholar 

  35. Y. Li, S. Feng, Q. Lv, X. Kan, X. Liu, J. Alloys Compd. 877, 160224 (2021). https://doi.org/10.1016/j.jallcom.2021.160224

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) funded by the Korea Government (No. 2018R1D1A1B07046937). The authors also acknowledge the Department of Kulliyat, Aligarh Muslim University, Aligarh, India.

Author information

Authors and Affiliations

Authors

Contributions

MSA involved in experimental work, investigation, conceptualization, methodology, formal analysis, writing original draft, and writing-review and editing. BHK involved in validation and visualization.

Corresponding author

Correspondence to M. S. Anwar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests or competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, M.S., Koo, B.H. Investigation on magnetic critical behavior related to its magnetocaloric effect in Mn0.5Zn0.5Fe2O4 spinel ferrite. Appl. Phys. A 128, 580 (2022). https://doi.org/10.1007/s00339-022-05724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05724-5

Keywords

Navigation