Skip to main content
Log in

Critical exponents and magnetic entropy change across the continuous magnetic transition in (La, Pr)-Ba manganites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The critical behavior and magnetocaloric effect (MCE) in the perovskite system La0.7−xPrxBa0.3MnO3 (x = 0.05, and 0.15) have been carefully investigated via dc-magnetization measurement. With the increase in Pr-doping, the universality class shifts from the predicted 3d-Heisenberg model characterized by a short-range coupling [β = 0.371 ± 0.008, γ = 1.351 ± 0.002 and δ = 4.634 ± 0.002, for x = 0.05] to an unknown one [β = 0.385 ± 0.004, γ = 1.324 ± 0.001 and δ = 4.435 ± 0.006, for x = 0. 15]. The critical exponents, however, obey the scaling behavior for both samples. Likewise, this series of compounds displays rescaled magnetic entropy data that plead in favor of a non-universal MCE behavior. Moreover, the field dependence of the magnetic entropy change (ΔSM) gives rise to critical exponents (β and γ) which are not consistent with that estimated through the critical behavior. Unexpectedly, the renormalization group approach revealed critical exponents for both samples comparable to those calculated for 3dXY spin interactions. All three exponents vary with Pr concentration, indicating the violation of both universality and weak universality hypotheses that may lead to several critical points. The unconventional outcomes suggest that, in addition to the correlation between quenched disorder and accommodation strain, magnetic anisotropy plays a major role with increasing Pr − x, opposing the exchange mechanisms. Pr − x enhanced the peak of ΔSM around TC and the relative cooling power (RCP). The broad operating temperature range along with a negligible hysteresis make Pr − 15% a promising candidate for magnetic refrigerant material near room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. G.H. Jonker, J.H. Van Santen, Physica 16, 337 (1950)

    Article  ADS  Google Scholar 

  2. E. Dagotto, S. Yunoki, C. Şen, G. Alvarez, A. Moreo, J. Phys. Condens. Matter 20, 434224 (2008)

    Article  ADS  Google Scholar 

  3. A. Ruff, Z. Li, A. Loidl, J. Schaab, M. Fiebig, A. Cano, Z. Yan, E. Bourret, J. Glaum, D. Meier, S. Krohns, Appl. Phys. Lett. 112, 182908 (2018)

    Article  ADS  Google Scholar 

  4. Z. Xie, Z. Zou, B. He, L. Liu, Z. Mao, Front. Mater. 8, 474 (2021)

    Article  ADS  Google Scholar 

  5. M.-H. Phan, S.-C. Yu, J. Magn. Magn. Mater. 308, 325 (2007)

    Article  ADS  Google Scholar 

  6. A.M. Glazer, Acta Cryst B 58, 1075 (2002)

    Article  Google Scholar 

  7. D. Yi, N. Lu, X. Chen, S. Shen, P. Yu, J. Phys.: Condens. Matter 29, 443004 (2017)

    ADS  Google Scholar 

  8. X. Yu, S. Jin, X. Guan, Y. Yan, K. Wu, L. Zhao, X. Liu, J. Alloy. Compd. 890, 161788 (2022)

    Article  Google Scholar 

  9. Y. Zhu, K. Du, J. Niu, L. Lin, W. Wei, H. Liu, H. Lin, K. Zhang, T. Yang, Y. Kou, J. Shao, X. Gao, X. Xu, X. Wu, S. Dong, L. Yin, J. Shen, Nat. Commun. 7, 11260 (2016)

    Article  ADS  Google Scholar 

  10. M.B. Salamon, P. Lin, S.H. Chun, Phys. Rev. Lett. 88, 197203 (2002)

    Article  ADS  Google Scholar 

  11. T. Miao, L. Deng, W. Yang, J. Ni, C. Zheng, J. Etheridge, S. Wang, H. Liu, H. Lin, Y. Yu, Q. Shi, P. Cai, Y. Zhu, T. Yang, X. Zhang, X. Gao, C. Xi, M. Tian, X. Wu, H. Xiang, E. Dagotto, L. Yin, J. Shen, PNAS 117, 7090 (2020)

    Article  ADS  Google Scholar 

  12. K.H. Ahn, T. Lookman, A.R. Bishop, Nature 428, 401 (2004)

    Article  ADS  Google Scholar 

  13. P. Lin, S.H. Chun, M.B. Salamon, Y. Tomioka, Y. Tokura, J. Appl. Phys. 87, 5825 (2000)

    Article  ADS  Google Scholar 

  14. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, Y. Tokura, Phys. Rev. B 53, R1689 (1996)

    Article  ADS  Google Scholar 

  15. M. Sahana, U.K. Rössler, N. Ghosh, S. Elizabeth, H.L. Bhat, K. Dörr, D. Eckert, M. Wolf, K.-H. Müller, Phys. Rev. B 68, 144408 (2003)

    Article  ADS  Google Scholar 

  16. S. Rößler, U.K. Rößler, K. Nenkov, D. Eckert, S.M. Yusuf, K. Dörr, K.-H. Müller, Phys. Rev. B 70, 104417 (2004)

    Article  ADS  Google Scholar 

  17. W. Archibald, J.-S. Zhou, J.B. Goodenough, Phys. Rev. B 53, 14445 (1996)

    Article  ADS  Google Scholar 

  18. A. Moreo, M. Mayr, A. Feiguin, S. Yunoki, E. Dagotto, Phys. Rev. Lett. 84, 5568 (2000)

    Article  ADS  Google Scholar 

  19. X.Z. Zhou, H.P. Kunkel, J.H. Zhao, P.A. Stampe, G. Williams, Phys. Rev. B 56, R12714 (1997)

    Article  ADS  Google Scholar 

  20. O.G. Mouritsen, Int. J. Quantum Chem. 35, 583 (1989)

    Article  Google Scholar 

  21. S.N. Kaul, J. Magn. Magn. Mater. 53, 5 (1985)

    Article  ADS  Google Scholar 

  22. Wiley.Com (n.d.).

  23. M. Hasenbusch, Phys. Rev. B 82, 174434 (2010)

    Article  ADS  Google Scholar 

  24. M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, Phys. Rev. B 63, 214503 (2001)

    Article  ADS  Google Scholar 

  25. M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, Phys. Rev. B 65, 144520 (2002)

    Article  ADS  Google Scholar 

  26. K. Kubo, N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1972)

    Article  ADS  Google Scholar 

  27. Y. Motome, N. Furukawa, J. Phys. Soc. Jpn. 69, 3785 (2000)

    Article  ADS  Google Scholar 

  28. Y. Motome, N. Furukawa, J. Phys. Soc. Jpn. 70, 1487 (2001)

    Article  ADS  Google Scholar 

  29. W. Jiang, X.Z. Zhou, G. Williams, Y. Mukovskii, K. Glazyrin, Phys. Rev. B 78, 144409 (2008)

    Article  ADS  Google Scholar 

  30. A. Tozri, E. Dhahri, E.K. Hlil, M.A. Valente, Solid State Commun. 151, 315 (2011)

    Article  ADS  Google Scholar 

  31. Y. Wang, H.J. Fan, Phys. Rev. B 83, 224409 (2011)

    Article  ADS  Google Scholar 

  32. A. Oleaga, A. Salazar, M. Ciomaga Hatnean, G. Balakrishnan, Phys. Rev. B 92, 024409 (2015)

    Article  ADS  Google Scholar 

  33. A. Tozri, Sh. Alhalafi, Z.A. Alrowaili, M. Horchani, A. Omri, R. Skini, S. Ghorai, A. Benali, B.F.O. Costa, G.O. Ildiz, J. Alloy. Compd. 890, 161739 (2022)

    Article  Google Scholar 

  34. A. Tozri, E. Dhahri, E.K. Hlil, Phys. Lett. A 375, 1528 (2011)

    Article  ADS  Google Scholar 

  35. R. Venkatesh, M. Pattabiraman, K. Sethupathi, G. Rangarajan, S. Angappane, J.-G. Park, J. Appl. Phys. 103, 07B319 (2008)

    Article  Google Scholar 

  36. P. Sarkar, T. Roy, N. Khan, P. Mandal, Physica B 583, 412050 (2020)

    Article  Google Scholar 

  37. T.A. Ho, T.D. Thanh, Y. Yu, D.M. Tartakovsky, T.O. Ho, P.D. Thang, A.-T. Le, T.-L. Phan, S.C. Yu, J. Appl. Phys. 117, 17D122 (2015)

    Article  Google Scholar 

  38. W. Jiang, X. Zhou, G. Williams, Y. Mukovskii, K. Glazyrin, Phys. Rev. Lett. 99, 177203 (2007)

    Article  ADS  Google Scholar 

  39. S.F. Fischer, S.N. Kaul, H. Kronmüller, Phys. Rev. B 65, 064443 (2002)

    Article  ADS  Google Scholar 

  40. M. Ziese, J. Phys. Condens. Matter 13, 2919 (2001)

    Article  ADS  Google Scholar 

  41. A. Perumal, V. Srinivas, V.V. Rao, R.A. Dunlap, Phys. Rev. Lett. 91, 137202 (2003)

    Article  ADS  Google Scholar 

  42. V. Franco, J.S. Blázquez, B. Ingale, A. Conde, Annu. Rev. Mater. Res. 42, 305 (2012)

    Article  ADS  Google Scholar 

  43. V. Franco, A. Conde, V. Provenzano, R.D. Shull, J. Magn. Magn. Mater. 322, 218 (2010)

    Article  ADS  Google Scholar 

  44. A. Kitanovski, Adv. Energy Mater. 10, 1903741 (2020)

    Article  Google Scholar 

  45. J. Romero Gómez, R. Ferreiro Garcia, A. De Miguel Catoira, M. Romero Gómez, Renew. Sustain. Energy Rev. 17, 74 (2013)

    Article  Google Scholar 

  46. T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch, Adv. Energy Mater. 9, 1901322 (2019)

    Article  Google Scholar 

  47. T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch, Adv. Energy Mater. 9, 1970130 (2019)

    Article  Google Scholar 

  48. V. Chaudhary, X. Chen, R.V. Ramanujan, Prog. Mater Sci. 100, 64 (2019)

    Article  Google Scholar 

  49. L.-W. Li, Chin. Phys. B 25, 037502 (2016)

    Article  ADS  Google Scholar 

  50. W. Zhong, C.-T. Au, Y.-W. Du, Chin. Phys. B 22, 057501 (2013)

    Article  ADS  Google Scholar 

  51. A.B. Beznosov, V.A. Desnenko, E.L. Fertman, C. Ritter, D.D. Khalyavin, Phys. Rev. B 68, 054109 (2003)

    Article  ADS  Google Scholar 

  52. A. Tozri, E. Dhahri, J. Alloy. Compd. 783, 718 (2019)

    Article  Google Scholar 

  53. R. Kamel, A. Tozri, E. Dhahri, E.K. Hlil, L. Bessais, J. Magn. Magn. Mater. 426, 757 (2017)

    Article  ADS  Google Scholar 

  54. A. Arrott, Phys. Rev. 108, 1394 (1957)

    Article  ADS  Google Scholar 

  55. B.K. Banerjee, Phys. Lett. 12, 16 (1964)

    Article  ADS  Google Scholar 

  56. A. Arrott, J.E. Noakes, Phys. Rev. Lett. 19, 786 (1967)

    Article  ADS  Google Scholar 

  57. J. Fan, L. Ling, B. Hong, L. Zhang, L. Pi, Y. Zhang, Phys. Rev. B 81, 144426 (2010)

    Article  ADS  Google Scholar 

  58. J.S. Kouvel, M.E. Fisher, Phys. Rev. 136, A1626 (1964)

    Article  ADS  Google Scholar 

  59. B. Widom, J. Chem. Phys. 43, 3898 (1965)

    Article  ADS  Google Scholar 

  60. W. Li, H.P. Kunkel, X.Z. Zhou, G. Williams, Y. Mukovskii, D. Shulyatev, Phys. Rev. B 70, 214413 (2004)

    Article  ADS  Google Scholar 

  61. A. Varvescu, I.G. Deac, Physica B 470–471, 96 (2015)

    Article  ADS  Google Scholar 

  62. N.T.M. Duc, C.-M. Hung, N.T. Huong, M.-H. Phan, J. Electron. Mater. 49, 2596 (2020)

    Article  ADS  Google Scholar 

  63. A.K. Pramanik, A. Banerjee, Phys. Rev. B 79, 214426 (2009)

    Article  ADS  Google Scholar 

  64. S. Srinath, S.N. Kaul, M.-K. Sostarich, Phys. Rev. B 62, 11649 (2000)

    Article  ADS  Google Scholar 

  65. M.E. Fisher, S. Ma, B.G. Nickel, Phys. Rev. Lett. 29, 917 (1972)

    Article  ADS  Google Scholar 

  66. W. Zhong, W. Chen, C.T. Au, Y.W. Du, J. Magn. Magn. Mater. 261, 238 (2003)

    Article  ADS  Google Scholar 

  67. S.C. Paticopoulos, R. Caballero-Flores, V. Franco, J.S. Blázquez, A. Conde, K.E. Knipling, M.A. Willard, Solid State Commun. 152, 1590 (2012)

    Article  ADS  Google Scholar 

  68. J.-G. Cheng, J.-S. Zhou, J.B. Goodenough, C.-Q. Jin, Phys. Rev. B 85, 184430 (2012)

    Article  ADS  Google Scholar 

  69. A. Aharony, E. Pytte, Phys. Rev. Lett. 45, 1583 (1980)

    Article  ADS  Google Scholar 

  70. P.M. Gehring, M.B. Salamon, A. del Moral, J.I. Arnaudas, Phys. Rev. B 41, 9134 (1990)

    Article  ADS  Google Scholar 

  71. B. Padmanabhan, H.L. Bhat, S. Elizabeth, S. Rößler, U.K. Rößler, K. Dörr, K.H. Müller, Phys. Rev. B 75, 024419 (2007)

    Article  ADS  Google Scholar 

  72. M. Haug, M. Fähnle, H. Kronmüller, F. Haberey, J. Magn. Magn. Mater. 69, 163 (1987)

    Article  ADS  Google Scholar 

  73. M. Dudka, R. Folk, Yu. Holovatch, J. Magn. Magn. Mater. 294, 305 (2005)

    Article  ADS  Google Scholar 

  74. A.B. Harris, J. Phys. C Solid State Phys. 7, 1671 (1974)

    Article  ADS  Google Scholar 

  75. A. Weinrib, B.I. Halperin, Phys. Rev. B 27, 413 (1983)

    Article  ADS  Google Scholar 

  76. V. Blavats’ka, C. von Ferber, Yu. Holovatch, Phys. Rev. B 67, 094404 (2003)

    Article  ADS  Google Scholar 

  77. S. Fujiyama, H. Ohsumi, T. Komesu, J. Matsuno, B.J. Kim, M. Takata, T. Arima, H. Takagi, Phys. Rev. Lett. 108, 247212 (2012)

    Article  ADS  Google Scholar 

  78. S.S. Islam, V. Singh, K. Somesh, P.K. Mukharjee, A. Jain, S.M. Yusuf, R. Nath, Phys. Rev. B 102, 134433 (2020)

    Article  ADS  Google Scholar 

  79. M.D. Lumsden, B.D. Gaulin, H. Dabkowska, M.L. Plumer, Phys. Rev. Lett. 76, 4919 (1996)

    Article  ADS  Google Scholar 

  80. R. Reisser, R.K. Kremer, A. Simon, Physica B 204, 265 (1995)

    Article  ADS  Google Scholar 

  81. Sk. Sabyasachi, A. Bhattacharyya, S. Majumdar, S. Giri, T. Chatterji, J. Alloy. Compd. 577, 165 (2013)

    Article  Google Scholar 

  82. D. Kim, B.L. Zink, F. Hellman, J.M.D. Coey, Phys. Rev. B 65, 214424 (2002)

    Article  ADS  Google Scholar 

  83. R. Venkatesh, M. Pattabiraman, S. Angappane, G. Rangarajan, K. Sethupathi, J. Karatha, M. Fecioru-Morariu, R.M. Ghadimi, G. Guntherodt, Phys. Rev. B 75, 224415 (2007)

    Article  ADS  Google Scholar 

  84. N. Khan, P. Sarkar, A. Midya, P. Mandal, P.K. Mohanty, Sci. Rep. 7, 45004 (2017)

    Article  ADS  Google Scholar 

  85. M. Suzuki, Progr. Theor. Phys. 51, 1992 (1974)

    Article  ADS  Google Scholar 

  86. K.-I. Kondo, Int. J. Mod. Phys. A 06, 5447 (1991)

    Article  ADS  Google Scholar 

  87. D. Fuchs, M. Wissinger, J. Schmalian, C.-L. Huang, R. Fromknecht, R. Schneider, H.V. Löhneysen, Phys. Rev. B 89, 174405 (2014)

    Article  ADS  Google Scholar 

  88. J. Khelifi, A. Tozri, E. Dhahri, Appl. Phys. A 116, 1041 (2014)

    Article  ADS  Google Scholar 

  89. A. Elghoul, A. Krichene, N. Chniba Boudjada, W. Boujelben, Ceram. Int. 44, 12723 (2018)

    Article  Google Scholar 

  90. F. Cao, H. Chen, Z. Xie, Y. Lu, J. Zhao, X. Jin, Chin. J. Phys. 65, 424 (2020)

    Article  Google Scholar 

  91. P. Nisha, S. Savitha Pillai, M.R. Varma, K.G. Suresh, Solid State Sci. 14, 40 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research at Jouf University under grant No (DSR-2021-03-0223). The authors would like to extend their sincere appreciation to the central laboratory at Jouf University for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

AT: conception, design of study, writing—review and editing. RK: writing—original draft. WSM: writing—review and editing. JL: visualization and investigation. ED: writing—review and editing. EKH: data curation, visualization and investigation.

Corresponding author

Correspondence to Anowar Tozri.

Ethics declarations

Conflict of interest

The authors declare that there are no conficts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tozri, A., Kamel, R., Mohamed, W.S. et al. Critical exponents and magnetic entropy change across the continuous magnetic transition in (La, Pr)-Ba manganites. Appl. Phys. A 128, 575 (2022). https://doi.org/10.1007/s00339-022-05719-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05719-2

Keywords

Navigation