Skip to main content
Log in

Low field magnetocaloric effect of PrCo\(_3\) compounds

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rare-earth-transition-metal intermetallics show very interesting magnetic properties for numerous applications (hard magnetic materials, magnetic refrigeration, ...). This paper is devoted to the study of the structural, magnetic, and magnetocaloric effect (MCE) of the intermetallic nanomaterials PrCo\(_3\), which derives from the PuNi\(_3\) type structure. This system crystallizes into the rhombohedral structure (\(R{\bar{3}}m\) space group). PrCo\(_3\) compound exhibits a second-order ferro-paramagnetic transition at around 330 K. This 1:3 system, based on a stacked Pr\(_2\)Co\(_4\) and PrCo\(_5\) units, has a magnetocaloric effect of 1.3 J/kg K at low field. In addition, we demonstrated that the MCE derived from phenomenological and experimental approaches were in agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. B.D. Cullity, Introduction to Magnetic Materials (Addison-Wesley Publishing Company, Reading, MA, 1972)

    Google Scholar 

  2. J.M.D. Coey, H. Sun, J. Magn. Magn. Mater. 87, L251 (1990)

    Article  ADS  Google Scholar 

  3. L. Bessais, C. Djega-Mariadassou, Phys. Rev. B 63, 54412 (2001)

    Article  ADS  Google Scholar 

  4. Y. Khan, Acta. Crystallogr. 30, 1533 (1974)

    Article  Google Scholar 

  5. Y. Khan, Phys. Stat. Sol. 23, 425 (1974)

    Article  ADS  Google Scholar 

  6. V.K. Pecharsky, K.A. Gschneidner, J. Magn. Magn. Mater. 167, L179 (1997)

    Article  ADS  Google Scholar 

  7. V.K. Pecharsky, K.A. Gschneidner, Phys. Rev. Lett. 78, 4497 (1997)

    Article  ADS  Google Scholar 

  8. K.A. Gschneidner, V.K. Pecharsky, E. Bruck, H.G.M. Duijin, E.M. Levin, Phys. Rev. Lett. 85, 4190 (2000)

    Article  ADS  Google Scholar 

  9. S. Fujieda, A. Fujita, K. Fukamichi, Appl. Phys. Lett. 81, 811276 (2002)

    Article  ADS  Google Scholar 

  10. H. Tang, V.K. Pecharsky, G.D. Samolyuk, M. Zou, K.A. Gschneidner, V.P. Antropov, D.L. Schlagel, T.A. Lograsso, Phys. Rev. Lett. 93, 237203 (2004)

    Article  ADS  Google Scholar 

  11. S. Fujieda, A. Fujita, K. Fukamichi, J. Magn. Magn. Mater. 310, e1004 (2007)

    Article  ADS  Google Scholar 

  12. H. Chen, Y. Zhang, J. Han, H. Du, C. Wang, Y. Yang, J. Magn. Magn. Mater. 320, 1382 (2008)

    Article  ADS  Google Scholar 

  13. A. Fujita, S. Fujieda, K. Fukamichi, J. Magn. Magn. Mater. 321, 3553 (2009)

    Article  ADS  Google Scholar 

  14. P. Gorria, P. Alvarez, J.S. Marcos, J. Sanchez-Llamazares, M.J. Perez, J.A. Blanco, Acta Mater. 57, 1724 (2009)

    Article  ADS  Google Scholar 

  15. M. Phejar, V. Paul-Bancour, L. Bessais, Intermetallics 18, 2301 (2010)

    Article  Google Scholar 

  16. S. Charfeddine, K. Zehani, L. Bessais, A. Korchef, J. Solid State Chem. 238, 15 (2016)

    Article  ADS  Google Scholar 

  17. V. Franco, J.S. Blazquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramirez, A. Conde, Prog. Mater. Sci. 93, 112 (2018)

    Article  Google Scholar 

  18. K. Nouri, T. Bartoli, A. Chrobak, J. Moscovici, L. Bessais, J. Electron. Mater. 47, 3836 (2018)

    Article  ADS  Google Scholar 

  19. S. Nikitin, N. Pankratov, A. Smarzhevskaya, J. Cwik, Y. Koshkid’ko, A. Karpenkov, D. Karpenkov, Y.P.Y.G. Pastushenkov, K. Nenkov, K. Rogacki, J. Alloys Compd. 854, 156214 (2021)

    Article  Google Scholar 

  20. R. Lemaire, Cobalt 33, 201 (1966)

    Google Scholar 

  21. R. Lemaire, R. Pauthenet, J. Schweizer, I.S. Silvera, J. Phys. Chem. Solids 28, 2471 (1967)

    Article  ADS  Google Scholar 

  22. V.V. Burnasheva, V.V. Klimeshin, V.A. Yartys, K.N. Semenenko, Inorg. Mater. 15, 627 (1979)

    Google Scholar 

  23. R. Guetari, R. Bez, A. Belhadj, K. Zehani, A. Bezergheanu, N. Mliki, L. Bessais, C. Cizmas, J. Alloys Compd. 588, 64 (2014)

    Article  Google Scholar 

  24. R. Guetari, T. Bartoli, C.B. Cizmas, N. Mliki, L. Bessais, J. Alloys Compd. 684, 291 (2016)

    Article  Google Scholar 

  25. K. Nouri, M. Jemmali, S. Walha, K. Zehani, A.B. Salah, L. Bessais, J. Alloys Compd. 672, 440 (2016)

    Article  Google Scholar 

  26. W. Bouzidi, K. Nouri, T. Bartoli, R. Sedek, H. Lassri, J. Moscovici, L. Bessais, J. Magn. Magn. Mater. 497, 166018 (2020)

    Article  Google Scholar 

  27. J. Rodriguez-Carvajal, M. Fernandez-Diaz, J. Martinez, J. Phys. Condens. Matter 81, 210 (1991)

    Google Scholar 

  28. J. Rodriguez-Carvajal, Physica B 55, 192 (1993)

    Google Scholar 

  29. C. Djega-Mariadassou, L. Bessais, J. Magn. Magn. Mater. 210, 81 (2000)

    Article  ADS  Google Scholar 

  30. K. Younsi, V. Russier, L. Bessais, J. Appl. Phys. 107, 8 (2010)

    Article  Google Scholar 

  31. H. Rietveld, Acta Crystallogr. 22, 151 (1967)

    Article  Google Scholar 

  32. P. Thompson, D. Cox, J. Hasting, J. Appl. Crystallogr. 20, 79 (1987)

    Article  Google Scholar 

  33. L. Bessais, K. Younsi, S. Khazzan, N. Mliki, Intermetallics 19, 997 (2011)

    Article  Google Scholar 

  34. K. Zehani, R. Bez, A. Boutahar, E. Hlil, H. Lassri, J.M.N. Mliki, L. Bessais, J. Alloys Compd. 591, 58 (2014)

    Article  Google Scholar 

  35. N. Hosni, K. Zehani, T. Bartoli, L.B.H. Maghraoui-Meherzi, J. Alloys Compd. 694, 1295 (2017)

    Article  Google Scholar 

  36. K. Iwase, K. Mori, S. Shimizu, S. Tashiro, T. Suzuki, Int. J. Hydrogen Energy 41, 14788 (2016)

    Article  Google Scholar 

  37. E. Belorizky, M. Fremy, J. Gavigan, D. Givord, H. Li, J. Appl. Phys. 61, 3971 (1987)

    Article  ADS  Google Scholar 

  38. J.J.M. Franse, R.J. Radwanski, Handbook of Magnetic Materials (Elsevier, Amsterdam, 1993)

    Google Scholar 

  39. M.A. Hamad, Phase Transit. 85, 106 (2012)

    Article  Google Scholar 

  40. A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and Its Applications (IOP, Bristol, 2003)

    Book  Google Scholar 

  41. R. Fersi, W. Bouzidi, N. Mliki, L. Bessais, Intermetallics 100, 181 (2018)

    Article  Google Scholar 

  42. W. Bouzidi, N. Mliki, L. Bessais, J. Electron. Mater. 47, 2776 (2018)

    Article  Google Scholar 

  43. J. Shen, J.-F. Wu, J.-R. Sun, J. Appl. Phys. 106, 083902 (2009)

    Article  ADS  Google Scholar 

  44. K. Zehani, R. Guetari, N. Mliki, L. Bessais, Phys. Proc. 75, 1435 (2015)

    Article  ADS  Google Scholar 

  45. H. Drulis, A. Hackemer, A. Zaleski, Yu.L. Yaropolov, S.A. Nikitin, V.N. Verbetsky, Solid State Commun. 151, 1240 (2011)

    Article  ADS  Google Scholar 

  46. A.V. Morozkin, A.V. Knotko, V.O. Yapaskurt, J. Yao, F. Yuan, Y. Mozharivskyj, R. Nirmala, S. Quezado, S.K. Malik, J. Solid State Chem. 232, 150 (2015)

    Article  ADS  Google Scholar 

  47. R. Rajivgandhi, J.A. Chelvane, S. Quezado, S. Malik, R. Nirmala, J. Magn. Magn. Mater. 433, 169 (2017)

    Article  ADS  Google Scholar 

  48. R. Rajivgandhi, J.A. Chelvane, A.K. Nigam, J.-G. Park, S.K. Malik, R. Nirmala, J. Magn. Magn. Mater. 418, 9 (2016)

    Article  ADS  Google Scholar 

  49. J.J. Ipus, J.M. Borrego, L.M. Moreno-Ramirez, J.S. Blazquez, V. Franco, A. Conde, Intermetallics 84 ( 2017)

  50. B.K. Banerjee, Phys. Lett. 2, 16 (1964)

    Article  ADS  Google Scholar 

  51. V.K. Pecharsky, K.A. Gschneidner, Magnetocaloric effect from indirect measurements: magnetization and heat capacity. J. Appl. Phys. 86, 565 (1999)

    Article  ADS  Google Scholar 

  52. F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, X.X. Zhang, J. Phys.: Condens. Matter 12:L691, 6 (2000)

    Google Scholar 

  53. M. Foldeaki, R. Chahine, T.K. Bose, J. Appl. Phys. 77, 3528 (1995)

    Article  ADS  Google Scholar 

  54. D.T.K. Anh, N.P. Thuy, N.H. Duc, T.T. Nhien, N.V. Nong, J. Magn. Magn. Mater. 262, 427 (2003)

    Article  ADS  Google Scholar 

  55. M. Balli, M. Rosca, D. Fruchart, D. Gignoux, J. Magn. Magn. Mater. 321, 123 (2009)

    Article  ADS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by SA, HJ, WB, KN, and TB. The first draft of the manuscript was written by WB, KN, and TB, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to L. Bessais.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Disclosure

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzidi, W., Nouri, K., Bartoli, T. et al. Low field magnetocaloric effect of PrCo\(_3\) compounds. Appl. Phys. A 128, 566 (2022). https://doi.org/10.1007/s00339-022-05702-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05702-x

Keywords

Navigation