Skip to main content
Log in

Observation of damage generation induced by electron excitation and stress wave propagation during ultrashort pulse laser drilling of sapphire

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrashort pulse laser processing is garnering significant attention as a method for processing sapphire. However, its preciseness is an issue owing to severe damage generated around a processed shape. In this study, to clarify the mechanism of damage generation and its dependence on pulse durations, an imaging technique combining pump-probe imaging and a high-speed camera is utilized. The pump-probe imaging visualizes ultrafast phenomena that occur in the order of picoseconds and nanoseconds, such as electron excitation and stress wave propagation, while the high-speed camera captures changes in the phenomena as the number of pulses increases in the order of milliseconds. Observations of electron excitations with up to 20 pulses show that when the pulse duration exceeds 3 ps, electron-induced damage inside sapphire is significant. High-speed observations up to 1000 pulses show that stress waves propagate from the tip of the hole and cause stress-induced damage. The stress-induced damage is first generated on the tip and then remains around the hole as sidewall damage as the number of pulses increases. The sidewall damage expands gradually and finally propagates to the surface, resulting in surface damage. Investigations based on varying pulse durations reveal that the stress-induced damage is more prominent when the pulse duration is 180 fs because of stronger stress waves. Furthermore, we discovered that the initially generated electron-induced damage ablates as the number of pulses increases; as such, more precise processing is achieved when the pulse duration is longer. The mechanisms of damage generation will contribute to not only the development of precision laser processing technology, but also to the further understanding of basic science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, J.G. Fujimoto, Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator. Opt. Lett. 26, 1516–1518 (2001)

    Article  ADS  Google Scholar 

  2. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, Y. Jiang, Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt. Lett. 26(23), 1912–1914 (2001)

    Article  ADS  Google Scholar 

  3. E.R. Dobrovinskaya, L.A. Lytvynov, V. Pishchik, Sapphire: Material, Manufacturing, Applications, 1st edn. (Springer, Dordrecht, 2009), pp. 1–4

    Book  Google Scholar 

  4. Q. Wen, P. Zhang, G. Chen, F. Jiang, X. Lu, Crystalline orientation effects on material removal of sapphire by femtosecond laser irradiation. Ceram. Int. 45, 23501–23508 (2019)

    Article  Google Scholar 

  5. Q. Wen, E. Fadeeva, S. Hanany, J. Koch, T. Matsumura, R. Takaku, K. Young, Picosecond laser ablation of millimeter-wave subwavelength structures on alumina and sapphire. Opt. Laser Technol. 142, 107207 (2021)

    Article  Google Scholar 

  6. T. Matsumura, K. Young, Q. Wen, S. Hanany, H. Ishino, Y. Inoue, M. Hazumi, J. Koch, O. Suttman, V. Schütz, Millimeter-wave broadband antireflection coatings using laser ablation of subwavelength structures. Appl. Optics 55(13), 3502–3509 (2016)

    Article  ADS  Google Scholar 

  7. K. Komatsu, T. Matsumura, H. Imada, H. Ishino, N. Katayama, Y. Sakurai, Demonstration of the broadband half-wave plate using the nine-layer sapphire for the cosmic microwave background polarization experiment. J. Astron. Telesc. Instrum. Syst. 5(4), 044008 (2019)

    Article  ADS  Google Scholar 

  8. R. Vilar, S.P. Sharma, A. Almeida, L.T. Cangueiro, V. Oliveira, Surface morphology and phase transformations of femtosecond laser-processed sapphire. Appl. Surf. Sci. 288, 313–323 (2014)

    Article  ADS  Google Scholar 

  9. D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, E.E.B. Campbell, Laser processing of sapphire with picosecond and sub-picosecond pulses. Appl. Surf. Sci. 120, 65–80 (1997)

    Article  ADS  Google Scholar 

  10. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, Experimental study on 785 nm femtosecond laser ablation of sapphire in air. Laser Phys. Lett. 12(6), 066103 (2015)

    Article  ADS  Google Scholar 

  11. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B. 14(10), 2716–2722 (1997)

    Article  ADS  Google Scholar 

  12. C.Y. Chien, M.C. Gupta, Pulse width effect in ultrafast laser processing of materials. Appl. Phys. A 81, 1257–1263 (2015)

    Article  ADS  Google Scholar 

  13. V. Schütz, K. Young, T. Matsumura, S. Hanany, J. Koch, O. Suttmann, L. Overmeyer, Q. Wen, Laser processing of sub-wavelength structures on sapphire and alumina for millimeter wavelength broadband anti-reflection coating. J. Laser. Micro. Nanoeng. 11(2), 204–209 (2016)

    Article  Google Scholar 

  14. E. Thiénot, F. Domingo, E. Cambril, C. Gosse, Reactive ion etching of glass for biochip applications: composition effects and surface damages. Microelectron. Eng. 83, 1155–1158 (2006)

    Article  Google Scholar 

  15. J. Hattori, Y. Ito, H. Jo, K. Nagato, N. Sugita, High-speed observation of pulse energy and pulse width dependences of damage generation in SiC during ultrashort pulse laser drilling. Appl. Phys. A 126, 861 (2020)

    Article  ADS  Google Scholar 

  16. B. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, J. Dudley, High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl. Phys. Lett. 97, 081102 (2010)

    Article  ADS  Google Scholar 

  17. G. Wang, Y. Yu, L. Jiang, X. Li, Q. Xie, Y. Lu, Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA. Appl. Phys. Lett. 110, 161907 (2017)

    Article  ADS  Google Scholar 

  18. Y. Ito, R. Yoshizaki, N. Miyamoto, N. Sugita, Ultrafast and precision drilling of glass by selective absorption of fiber-laser pulse into femtosecond-laser-induced filament. Appl. Phys. Lett. 113, 061101 (2018)

    Article  ADS  Google Scholar 

  19. A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007)

    Article  ADS  Google Scholar 

  20. R. Shinomoto, Y. Ito, T. Kizaki, K. Tatsukoshi, Y. Fukasawa, K. Nagato, N. Sugita, M. Mitsuishi, Experimental analysis of glass drilling with ultrashort pulse lasers. Int. J. Automot. Technol. 10, 863–873 (2016)

    Article  Google Scholar 

  21. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, Femtosecond laser-induced damage and filamentary propagation in fused silica. Phys. Rev. Lett. 89(18), 186601 (2002)

    Article  ADS  Google Scholar 

  22. X. Mao, S.S. Mao, R.E. Russo, Imaging femtosecond laser-induced electronic excitation in glass. Appl. Phys. Lett. 82(5), 697–699 (2003)

    Article  ADS  Google Scholar 

  23. M. Sun, U. Eppelt, W. Schulz, J. Zhu, Role of thermal ionization in internal modification of bulk borosilicate glass with picosecond laser pulses at high repetition rates. Opt. Mater. Express 3(10), 1716–1726 (2013)

    Article  ADS  Google Scholar 

  24. G. Ren, Y. Ito, H. Sun, N. Sugita, Temporal-spatial characteristics of filament induced by a femtosecond laser pulse in transparent dielectrics. Opt. Express 30(4), 4954–4964 (2022)

    Article  ADS  Google Scholar 

  25. M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, K. Hirao, Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals. Opt. Express 19(18), 17780–17789 (2011)

    Article  ADS  Google Scholar 

  26. S. Panchatsharam, B. Tan, K. Venkatakrishnan, Femtosecond laser-induced shockwave formation on ablated silicon surface. J. Appl. Phys. 105, 093103 (2009)

    Article  ADS  Google Scholar 

  27. A. Miloshevsky, S.S. Harilal, G. Miloshevsky, A. Hassanein, Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures. Phys. Plasmas 21, 043111 (2014)

    Article  ADS  Google Scholar 

  28. D. Grossmann, M. Reininghaus, C. Kalupka, M. Jenne, M. Kumkar, In-situ microscopy of front and rear side ablation processes in alkali aluminosilicate glass using ultra short pulsed laser radiation. Opt. Express 25(23), 28478–28488 (2017)

    Article  ADS  Google Scholar 

  29. Y. Ito, R. Shinomoto, A. Otsu, I. Nagasawa, K. Nagato, N. Sugita, Dynamics of pressure waves during femtosecond laser processing of glass. Opt. Express 27(20), 29158–29167 (2019)

    Article  ADS  Google Scholar 

  30. J. Hattori, Y. Ito, K. Nagato, N. Sugita, Investigation of damage generation process by stress waves during femtosecond laser drilling of SiC. Precis. Eng. 72, 789–797 (2021)

    Article  Google Scholar 

  31. K. Mishchik, K. Gaudfrin, J. Lopez, Drilling of through holes in sapphire using femtosecond laser pulses. J. Laser Micro Nanoeng. 12(3), 321–324 (2017)

    Google Scholar 

  32. H. Jo, Y. Ito, J. Hattori, K. Nagato, N. Sugita, High-speed observation of damage generation during ultrashort pulse laser drilling of sapphire. Opt. Commun. 495, 127122 (2021)

    Article  Google Scholar 

  33. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V. Tikhonchuk, Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. Phys. Rev. Lett. 96, 166101 (2006)

    Article  ADS  Google Scholar 

  34. T. Takahashi, S. Tani, R. Kuroda, Y. Kobayashi, Precision measurement of ablation thresholds with variable pulse duration laser. Appl. Phys. A 126, 582 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Society for the Promotion of Science (21K18667) and OSG fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Ito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Ito, Y., Ren, G. et al. Observation of damage generation induced by electron excitation and stress wave propagation during ultrashort pulse laser drilling of sapphire. Appl. Phys. A 128, 547 (2022). https://doi.org/10.1007/s00339-022-05686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05686-8

Navigation