Skip to main content

Advertisement

Log in

Impact of silver/copper dual-doping on the structure, linear and non-linear optical performance of ZnO thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The impact of Ag, Cu and Ag/Cu dual-doping on the structure, linear and non-linear optical performance of ZnO thin films has been investigated. Undoped ZnO and Ag, Cu and Ag/Cu dual-doped ZnO thin films (Zn0.95Ag0.05−xCuxO, where x: 0, 0.025 and 0.05) were prepared using the spray pyrolysis method. The morphology of the samples was examined using a scanning electron microscope. The variations in the samples’ structure were explored using a Fourier transform infrared spectrophotometer. The optical transmittance and absorbance spectra were measured using a UV–visible-NIR spectrophotometer. The optical properties analysis reveals that the absorbance of the doped ZnO thin films increases due to Ag, Cu and Ag/Cu dual doping. While the energy bandgap of the plain ZnO decreases from 3.27 to 3.12 eV (Ag-doped ZnO), 3.02 eV (Ag/Cu dual-doped ZnO) and 2.95 eV (Cu-doped ZnO). The refractive index (n), dielectric constants and nonlinear optical properties of the ZnO thin film are greatly enhanced due to Ag, Cu and Ag/Cu dual doping. For instance, at the incident photons energy of 2.5 eV, n increases from 2.06 (plain ZnO) to 2.28 (Ag-doped ZnO), 2.45 (Ag/Cu dual-doped ZnO) and 2.90 (Cu-doped ZnO). The third-order nonlinear optical susceptibility (χ(3)) is improved from 8 × 10–13 esu (plain ZnO) to 2.1 × 10–12 esu (Ag-doped ZnO), 4.13 × 10–12 esu (Ag/Cu dual-doped ZnO) and 2.05 × 10–11 esu (Cu-doped ZnO).The enhanced linear and nonlinear optical properties of the ZnO thin films via Ag, Cu and Ag/Cu dual-doping nominate them for optical and photonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Badawi, M.G. Althobaiti, S.S. Alharthi, A.N. Alharbi, A.A. Alkathiri, S.E. Alomairy, Effect of zinc doping on the structure and optical properties of iron oxide nanostructured films prepared by spray pyrolysis technique. Appl. Phys. A 128(2), 123 (2022)

    ADS  Google Scholar 

  2. A. Badawi, M.G. Althobaiti, E.E. Ali, S.S. Alharthi, A.N. Alharbi, A comparative study of the structural and optical properties of transition metals (M = Fe Co, Mn, Ni) doped ZnO films deposited by spray-pyrolysis technique for optoelectronic applications. Opt. Mater. 124, 112055 (2022)

    Google Scholar 

  3. A. Badawi, M.G. Althobaiti, Effect of Cu-doping on the structure, FT-IR and optical properties of Titania for environmental-friendly applications. Ceram. Int. 47(8), 11777–11785 (2021)

    Google Scholar 

  4. Y.B. Saddeek, H.M.H. Zakaly, K.C. Sekhar, S.A.M. Issa, T. Alharbi, A. Badawi, M. Shareefuddin, Investigations of mechanical and radiation shielding properties of BaTiO3-modified cadmium alkali borate glass. Appl. Phys. A 128(4), 260 (2022)

    ADS  Google Scholar 

  5. A. Badawi, S.S. Alharthi, M.G. Althobaiti, A.N. Alharbi, H. Assaedi, H.I. Alkhammash, N. Al-Hosiny, Structure investigation and optical bandgap tuning of La-doped CuO nanostructured films prepared by spray pyrolysis technique. Appl. Phys. A 127(4), 235 (2021)

    ADS  Google Scholar 

  6. A. Badawi, M.G. Althobaiti, S.S. Alharthi, A.M. Al-Baradi, Tailoring the optical properties of CdO nanostructures via barium doping for optical windows applications. Phys. Lett. A 411, 127553 (2021)

    Google Scholar 

  7. S. Kurtaran, M. Kellegöz, S. Köse, Characterization of Gd doped CeO2 thin films grown by ultrasonic spray pyrolysis. Opt. Mater. 117, 111144 (2021)

    Google Scholar 

  8. E.A. Gavrilenko, D.A. Goncharova, I.N. Lapin, A.L. Nemoykina, V.A. Svetlichnyi, A.A. Aljulaih, N. Mintcheva, S.A. Kulinich, Comparative study of physicochemical and antibacterial properties of ZnO nanoparticles prepared by laser ablation of Zn target in water and air. Materials 12(1), 186 (2019)

    ADS  Google Scholar 

  9. H.A. Saudi, H.O. Tekin, H.M.H. Zakaly, S.A.M. Issa, G. Susoy, M. Zhukovsky, The impact of samarium (III) oxide on structural, optical and radiation shielding properties of thallium-borate glasses: experimental and numerical investigation. Opt. Mater. 114, 110948 (2021)

    Google Scholar 

  10. H.O. Tekin, M.S. Al-Buriahi, S.A.M. Issa, H.M.H. Zakaly, B. Issa, I. Kebaili, A. Badawi, M.K.A. Karim, K.A. Matori, M.H.M. Zaid, Effect of Ag2O substituted in bioactive glasses: a synergistic relationship between antibacterial zone and radiation attenuation properties. J. Market. Res. 13, 2194–2201 (2021)

    Google Scholar 

  11. S. Roy, M.P. Ghosh, S. Mukherjee, Introducing magnetic properties in Fe-doped ZnO nanoparticles. Appl. Phys. A 127(6), 451 (2021)

    ADS  Google Scholar 

  12. H. Fayaz Rouhi, S.M. Rozati, Synthesis and investigating effect of tellurium-doping on physical properties of zinc oxide thin films by spray pyrolysis technique. Appl. Phys. A 128(3), 252 (2022)

    ADS  Google Scholar 

  13. X. Wu, Z. Wei, L. Zhang, X. Wang, H. Yang, J. Jiang, Optical and magnetic properties of Fe doped ZnO nanoparticles obtained by hydrothermal synthesis. J. Nanomater. 2014, 792102 (2014)

    Google Scholar 

  14. Y. Ishikawa, Y. Shimizu, T. Sasaki, N. Koshizaki, Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature. J. Coll. Interface Sci. 300(2), 612–615 (2006)

    ADS  Google Scholar 

  15. A.F. Al-Naim, A. Sedky, N. Afify, S.S. Ibrahim, Structural, FTIR spectra and optical properties of pure and co-doped Zn1-x-yFexMyO ceramics with (M = Cu, Ni) for plastic deformation and optoelectronic applications. Appl. Phys. A 127(11), 840 (2021)

    ADS  Google Scholar 

  16. A. Sedky, N. Afify, A.M. Ali, H. Algarni, On the dielectric behaviors of Zn1−x−yFexMyO ceramics for nonlinear optical and solar cell devices. Appl. Phys. A 128(2), 102 (2022)

    ADS  Google Scholar 

  17. M.A. Qamar, M. Javed, S. Shahid, Designing and investigation of enhanced photocatalytic and antibacterial properties of 3d (Fe Co, Ni, Mn and Cr) metal-doped zinc oxide nanoparticles. Opt. Mater. 126, 112211 (2022)

    Google Scholar 

  18. C. Kuang, P. Tan, A. Bahadur, S. Iqbal, M. Javed, M.A. Qamar, M. Fayyaz, G. Liu, O.M. Alzahrani, E. Alzahrani, A.-E. Farouk, Dye degradation study by incorporating Cu-doped ZnO photocatalyst into polyacrylamide microgel. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-07984-6

    Article  Google Scholar 

  19. S. Ibrahim, R.M.M. Morsi, S.M. Abo-Naf, Role of Mn/Cr dual-doped ZnO nanoparticles of diluted magnetic semiconductors: influence on structural and electrical properties. Appl. Phys. A 127(12), 905 (2021)

    ADS  Google Scholar 

  20. S. Homnan, P. Malison, K. Amratisha, P. Kanjanaboos, D. Wongratanaphisan, T. Sagawa, P. Ruankham, Low-temperature processable Sn-doped ZnO films as electron transporting layers for perovskite solar cells. J. Mater. Sci. Mater. Electron. 32(23), 27279–27289 (2021)

    Google Scholar 

  21. N.M.A. Hadia, M. Aljudai, M. Alzaid, S.H. Mohamed, W.S. Mohamed, Synthesis and characterization of undoped and copper-doped zinc oxide nanowires for optoelectronic and solar cells applications. Appl. Phys. A 128(1), 17 (2021)

    ADS  Google Scholar 

  22. S. Anil Kadam, S. Anna Thomas, Y.-R. Ma, L. Maria Jose, D. Sajan, A. Aravind, Investigation of adsorption and photocatalytic behavior of manganese doped zinc oxide nanostructures. Inorg Chem Commun 134, 108981 (2021)

    Google Scholar 

  23. J. Kazmi, P.C. Ooi, B.T. Goh, M.K. Lee, M.F.M. Razip Wee, S. Shafura, A. Karim, S.R. Ali Raza, M.A. Mohamed, Bi-doping improves the magnetic properties of zinc oxide nanowires. RSC Adv. 10(39), 23297–23311 (2020)

    ADS  Google Scholar 

  24. C. Belkhaoui, N. Mzabi, H. Smaoui, P. Daniel, Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping. Results in Physics 12, 1686–1696 (2019)

    ADS  Google Scholar 

  25. L. Xu, J. Miao, Y. Chen, J. Su, M. Yang, L. Zhang, L. Zhao, S. Ding, Characterization of Ag-doped ZnO thin film for its potential applications in optoelectronic devices. Optik 170, 484–491 (2018)

    ADS  Google Scholar 

  26. A. Kumar, P. Dhiman, S. Sarveena, M.S. Aggarwal, Investigation of the room temperature ferro-magnetism in transition metal-doped ZnO thin films. Appl. Phys. A 126(12), 941 (2020)

    ADS  Google Scholar 

  27. D.R. Sahu, Properties of doped ZnO thin films grown by simultaneous dc and RF magnetron sputtering. Mater. Sci. Eng. B 171(1), 99–103 (2010)

    Google Scholar 

  28. R. Ebrahimi, K. Hossienzadeh, A. Maleki, R. Ghanbari, R. Rezaee, M. Safari, B. Shahmoradi, H. Daraei, A. Jafari, K. Yetilmezsoy, S.H. Puttaiah, Effects of doping zinc oxide nanoparticles with transition metals (Ag, Cu, Mn) on photocatalytic degradation of Direct Blue 15 dye under UV and visible light irradiation. J. Environ. Health Sci. Eng. 17(1), 479–492 (2019)

    Google Scholar 

  29. A. Ziashahabi, M. Prato, Z. Dang, R. Poursalehi, N. Naseri, The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark. Sci. Rep. 9(1), 11839 (2019)

    ADS  Google Scholar 

  30. M.K. Alqadi, A.B. Migdadi, F.Y. Alzoubi, H.M. Al-Khateeb, A.A. Almasri, Influence of (Ag–Cu) co-doping on the optical, structural, electrical, and morphological properties of ZnO thin films. J. Sol-Gel Sci. Technol. (2022). https://doi.org/10.1007/s10971-022-05785-1

    Article  Google Scholar 

  31. R. Kant, R. Jakhar, A. Sharma, Enhanced dielectric and optical performance of (Cu, Ag) co-doped ZnO nanostructures for electronic applications. Mater. Technol. (2022). https://doi.org/10.1080/10667857.2022.2058835

    Article  Google Scholar 

  32. M. Vigneshwaran, R. Chandiramouli, B.G. Jeyaprakash, D. Balamurugan, Physical properties of spray deposited Mg doped CdO thin films. J. Appl. Sci. 12, 1754–1757 (2012)

    ADS  Google Scholar 

  33. R.J. Deokate, S.M. Pawar, A.V. Moholkar, V.S. Sawant, C.A. Pawar, C.H. Bhosale, K.Y. Rajpure, Spray deposition of highly transparent fluorine doped cadmium oxide thin films. Appl. Surf. Sci. 254(7), 2187–2195 (2008)

    ADS  Google Scholar 

  34. A. Abdel-Galil, M.S.A. Hussien, I.S. Yahia, Synthesis and optical analysis of nanostructured F-doped ZnO thin films by spray pyrolysis: Transparent electrode for photocatalytic applications. Opt. Mater. 114, 110894 (2021)

    Google Scholar 

  35. N.Y. Mostafa, A. Badawi, S.I. Ahmed, Influence of Cu and Ag doping on structure and optical properties of In2O3 thin film prepared by spray pyrolysis. Results Phys. 10, 126–131 (2018)

    ADS  Google Scholar 

  36. A. Badawi, Engineering the optical properties of PVA/PVP polymeric blend in situ using tin sulfide for optoelectronics. Appl. Phys. A 126(5), 335 (2020)

    ADS  Google Scholar 

  37. J. Tauc, Amorphous and liquid semiconductors (Springer, Boston, 1974)

    Google Scholar 

  38. A. Badawi, Engineering the energy bandgap of lead cobalt sulfide quantum dots for visible light optoelectronics. J. Mater. Sci.: Mater. Electron. 31(20), 17726–17735 (2020)

    Google Scholar 

  39. A. Badawi, A.H. Al Otaibi, A.M. Albaradi, N. Al-Hosiny, S.E. Alomairy, Tailoring the energy band gap of alloyed Pb1−xZnxS quantum dots for photovoltaic applications. J. Mater. Sci. Mater. Electron. 29(24), 20914–20922 (2018)

    Google Scholar 

  40. A. Badawi, Tunable energy band gap of Pb1-xCoxS quantum dots for optoelectronic applications. Superlatt. Microstruct. 125, 237–246 (2019)

    ADS  Google Scholar 

  41. H.M.H. Zakaly, H.A. Saudi, S.A.M. Issa, M. Rashad, A.I. Elazaka, H.O. Tekin, Y.B. Saddeek, Alteration of optical, structural, mechanical durability and nuclear radiation attenuation properties of barium borosilicate glasses through BaO reinforcement: experimental and numerical analyses. Ceram. Int. 47(4), 5587–5596 (2021)

    Google Scholar 

  42. M. Rashad, H.A. Saudi, H.M.H. Zakaly, S.A.M. Issa, A.M. Abd-Elnaiem, Control optical characterizations of Ta+5–doped B2O3–Si2O–CaO–BaO glasses by irradiation dose. Opt. Mater. 112, 110613 (2021)

    Google Scholar 

  43. P. Dhatarwal, R.J. Sengwa, Investigation on the optical properties of (PVP/PVA)/Al2O3 nanocomposite films for green disposable optoelectronics. Phys. B 613, 412989 (2021)

    Google Scholar 

  44. R. Leelavati, R. Kumar, Kumar, structural and optical studies of Mn2+ substituted CdO nano-particles. Appl. Phys. A 127(4), 249 (2021)

    ADS  Google Scholar 

  45. S.A.M. Issa, H.M.H. Zakaly, H.O. Tekin, H.A. Saudi, A. Badawi, M. Pyshkina, G. Susoy, A.I. Elazaka, A. Ene, Exploring the FTIR, optical and nuclear radiation shielding properties of samarium-borate glass: a characterization through experimental and simulation methods. Nanomaterials 11(7), 1713 (2021)

    Google Scholar 

  46. A. Badawi, S.J. Alsufyani, S.S. Alharthi, M.G. Althobaiti, A.A. Alkathiri, M. Almurayshid, A.N. Alharbi, Impact of gamma irradiation on the structural, linear and nonlinear optical properties of lead oxide incorporated PVA/graphene blend for shielding applications. Opt. Mater. 127, 112244 (2022)

    Google Scholar 

  47. A. Badawi, S.S. Alharthi, M.G. Althobaiti, A.N. Alharbi, The effect of iron oxide content on the structural and optical parameters of polyvinyl alcohol/graphene nanocomposite films. J. Vinyl Add. Tech. 28(1), 235–246 (2022)

    Google Scholar 

  48. A. Badawi, S.S. Alharthi, H. Assaedi, A.N. Alharbi, M.G. Althobaiti, Cd0.9Co0.1S nanostructures concentration study on the structural and optical properties of SWCNTs/PVA blend. Chem. Phys. Lett. 775, 138701 (2021)

    Google Scholar 

  49. A. Badawi, S.S. Alharthi, H. Assaedi, N. Al-Hosiny, Effect of the solar irradiation on the structure and optical properties of Gafchromic films. Appl. Phys. A 127(4), 272 (2021)

    ADS  Google Scholar 

  50. Z.K. Heiba, M.B. Mohamed, A. Badawi, Structure, optical and electronic characteristics of iron-doped cadmium sulfide under nonambient atmosphere. Appl. Phys. A 127(3), 166 (2021)

    ADS  Google Scholar 

  51. K.C. Kumar, S. Kaleemulla, C. Krishnamoorthi, N.M. Rao, G.V. Rao, Evidence of room temperature ferromagnetism in Zn1−xSnxS thin films. J. Supercond. Novel Magn. 32(6), 1725–1734 (2019)

    Google Scholar 

  52. H. Elhosiny Ali, H. Algarni, I.S. Yahia, Y. Khairy, Optical absorption and linear/nonlinear parameters of polyvinyl alcohol films doped by fullerene. Chin. J. Phys. 72, 270–285 (2021)

    Google Scholar 

  53. O. Erken, Effect of cycle numbers on the structural, linear and nonlinear optical properties in Fe2O3 thin films deposited by SILAR method. Curr. Appl. Phys. 34, 7–18 (2022)

    MathSciNet  ADS  Google Scholar 

  54. Z.K. Heiba, M.B. Mohamed, N.M. Farag, A. Badawi, Controlling the structural, linear and nonlinear optical and photoluminescent characteristics of NiCo2O4 via alloying with MnS. Appl. Phys. A 128(4), 295 (2022)

    ADS  Google Scholar 

  55. M. Ali, S. Sharif, S. Anjum, M. Imran, M. Ikram, M. Naz, S. Ali, Preparation of Co and Ni doped ZnO nanoparticles served as encouraging nano-catalytic application. Mater. Res. Express 6(12), 1250d1255 (2020)

    Google Scholar 

  56. A. Taufiq, H.N. Ulya, J. Utomo, N. Sunaryono, H. Hidayat, N.M. Susanto, S.S. Munasir, Structural, optical, and antifungal characters of zinc oxide nanoparticles prepared by sol-gel method. J. Phys. Conf. Ser. 1093(1), 012001 (2018)

    Google Scholar 

  57. A.M. Al-Baradi, F.A. Altowairqi, A.A. Atta, A. Badawi, S.A. Algarni, A.S.A. Almalki, A.M. Hassanien, A. Alodhayb, A.M. Kamal, M.M. El-Nahass, Structural and optical characteristics features of RF sputtered CdS/ZnO thin films. Chin. Phys. B 29(8), 080702 (2020)

    ADS  Google Scholar 

  58. F. Taghizadeh Chari, M.R. Fadavieslam, Microstructural, optical and electrical properties of CdS thin films grown by spray pyrolysis technique as a function of substrate temperature. Opt. Quant. Electron. 51(12), 377 (2019)

    Google Scholar 

  59. A.M. Ibrahim, H.I. Alkhammash, Influence of extra-addition of sulfur on the optical, electrical, and photoconductivity of the borate glasses containing MoO3. J. Mater. Sci.: Mater. Electron. 32, 7294–7306 (2021)

    Google Scholar 

  60. A. Ayana, B.V. Rajendra, Comparative study of optical properties of ZnO and Zn0.95La0.05O thin films. Mater. Today: Proc. 55, 77–81 (2022)

    Google Scholar 

  61. M. Girish, T. Dhandayuthapani, R. Sivakumar, C. Sanjeeviraja, MnS thin films prepared by a simple and novel nebulizer technique: report on the structural, optical, and dispersion energy parameters. J. Mater. Sci.: Mater. Electron. 26(6), 3670–3684 (2015)

    Google Scholar 

  62. S.H. Mohamed, R. Drese, Structural and optical properties of direct current sputtered zinc aluminum oxides with a high Al concentration. Thin Solid Films 513(1), 64–71 (2006)

    ADS  Google Scholar 

  63. S.H. Mohamed, O. Kappertz, J.M. Ngaruiya, T. Niemeier, R. Drese, R. Detemple, M.M. Wakkad, M. Wuttig, Influence of nitrogen content on properties of direct current sputtered TiOxNy films. Physica Status Solidi (a) 201(1), 90–102 (2004)

    ADS  Google Scholar 

  64. A.A. Aboud, A. Mukherjee, N. Revaprasadu, A.N. Mohamed, The effect of Cu-doping on CdS thin films deposited by the spray pyrolysis technique. J. Market. Res. 8(2), 2021–2030 (2019)

    Google Scholar 

  65. Z. Serbetçi, H.M. El-Nasser, F. Yakuphanoglu, Photoluminescence and refractive index dispersion properties of ZnO nanofibers grown by sol–gel method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 86, 405–409 (2012)

    ADS  Google Scholar 

  66. G.P. Bharti, A. Khare, Structural and linear and nonlinear optical properties of Zn1-xAlxO (0≤x≤0.10) thin films fabricated via pulsed laser deposition technique. Opti. Mater. Express 6(6), 2063–2080 (2016)

    ADS  Google Scholar 

  67. A.M. Alsaad, Q.M. Al-Bataineh, A.A. Ahmad, Z. Albataineh, A. Telfah, Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: a novel derived mathematical model from the experimental transmission spectra. Optik 211, 164641 (2020)

    ADS  Google Scholar 

  68. P. Singh, R. Kumar, Investigation of refractive index dispersion parameters of Er doped ZnO thin films by WDD model. Optik 246, 167829 (2021)

    ADS  Google Scholar 

  69. Z.K. Heiba, M. Bakr Mohamed, S.I. Ahmed, Exploring the physical propertiesn of PVA/PEG polymeric material upon doping with nano gadolinium oxide. Alexand. Eng. J. 61(5), 3375–3383 (2022)

    Google Scholar 

Download references

Acknowledgements

Authors thank Taif University Researchers Supporting Project number (TURSP-2020/272), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Badawi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Althobaiti, M.G., Alharthi, S.S., Alharbi, A.N. et al. Impact of silver/copper dual-doping on the structure, linear and non-linear optical performance of ZnO thin films. Appl. Phys. A 128, 539 (2022). https://doi.org/10.1007/s00339-022-05682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05682-y

Keywords

Navigation