Skip to main content
Log in

A dielectric study of Br-doped lead-free methylammonium bismuth chloride (CH3NH3)3Bi2BrxCl9−x

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report here the synthesis and dielectric characteristics of lead-free methylammonium bismuth chloride (MABiCl) and bromine (Br) doped methylammonium bismuth chloride (MABiBrCl) powders. The dielectric characteristics of the samples (pressed powder pellet) measured in the frequency range 1 Hz to 1 MHz and temperature range 333–403 K indicate complex electrical transport in these halide perovskite materials. We have observed that the transport is dominated by long-range hopping of carriers and localized charges above and below a critical frequency respectively. The experimental data are fitted with the theoretical models considering grains, grain boundary, and contacts effects and made a comprehensive analysis. The activation energy obtained from ac electrical conductivity measurements is found to be relatively higher for the Br doped MABiBrCl than undoped MABiCl, which might explain some of the properties reported on solar cells and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The author confirms that all data generated and analysed during this study are included in this article. Furthermore, all sources used to correlate the study are properly referenced or publicly available at the time of submission.

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  2. J.M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Energy Environ. Sci. 8, 2118 (2015)

    Article  Google Scholar 

  3. T.Y. Yang, G. Gregori, N. Pellet, M. Grätzel, J. Maier, Angew. Chemie - Int. Ed. 54, 7905 (2015)

    Article  Google Scholar 

  4. S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, S. Il-Seok, Science 356, 167 (2017)

    Article  ADS  Google Scholar 

  5. Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, J. You, Nat. Energy 2, 16177 (2016)

    Article  ADS  Google Scholar 

  6. T. Jesper-Jacobsson, J.P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 9, 1706 (2016)

    Article  Google Scholar 

  7. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S. Il-Seok, Science 348, 1234 (2015)

    Article  ADS  Google Scholar 

  8. M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Science 354, 206 (2016)

    Article  ADS  Google Scholar 

  9. L. Liang, P. Gao, Adv. Sci. 5, 1700331 (2018)

    Article  Google Scholar 

  10. P. Chandra, S.K. Mandal, Phys. B Condens. Matter 625, 413536 (2022)

    Article  Google Scholar 

  11. B.W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E.M.J. Johansson, Adv. Mater. 27, 6806 (2015)

    Article  Google Scholar 

  12. R.L.Z. Hoye, R.E. Brandt, A. Osherov, V. Stevanovic, S.D. Stranks, M.W.B. Wilson, H. Kim, A.J. Akey, J.D. Perkins, R.C. Kurchin, J.R. Poindexter, E.N. Wang, M.G. Bawendi, V. Bulovic, T. Buonassisi, Chem. A Eur. J. 22, 2605 (2016)

    Article  Google Scholar 

  13. D. Kiermasch, P. Rieder, K. Tvingstedt, A. Baumann, V. Dyakonov, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  14. A. Suzuki, T. Ohtsuki, T. Oku, T. Akiyama, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 177, 877 (2012)

    Article  Google Scholar 

  15. R.S. Sanchez, V. Gonzalez-Pedro, J.W. Lee, N.G. Park, Y.S. Kang, I. Mora-Sero, J. Bisquert, J. Phys. Chem. Lett. 5, 2357 (2014)

    Article  Google Scholar 

  16. Y. Mateyshina, A. Slobodyuk, V. Kavun, N. Uvarov, Solid State Ionics 324, 196 (2018)

    Article  Google Scholar 

  17. M.R. Das, A. Mukherjee, P. Mitra, Mater. Sci. Pol. 35, 470 (2017)

    Article  ADS  Google Scholar 

  18. K. Ahmad, S.N. Ansari, K. Natarajan, S.M. Mobin, A.C.S. Appl, Energy Mater. 1, 2405 (2018)

    Google Scholar 

  19. M. Venkateswarlu, K. Narasimha-Reddy, B. Rambabu, N. Satyanarayana, Solid State Ionics 127, 177 (2000)

    Article  Google Scholar 

  20. R.J. Sengwa, P. Dhatarwal, S. Choudhary, Solid State Ionics 324, 247 (2018)

    Article  Google Scholar 

  21. B. Harihara-Venkataraman, K.B.R. Varma, Solid State Ionics 167, 197 (2004)

    Article  Google Scholar 

  22. H. Yamamura, S. Takeda, K. Kakinuma, J. Ceram. Soc. Japan 115, 471 (2007)

    Article  Google Scholar 

  23. P. Maji, A. Ray, P. Sadhukhan, A. Roy, S. Das, Mater. Lett. 227, 268 (2018)

    Article  Google Scholar 

  24. R. Kaur, V. Sharma, M. Kumar, M. Singh, A. Singh, J. Alloys Compd. 735, 1472 (2018)

    Article  Google Scholar 

  25. R. Tang, C. Jiang, Y. Fang, H. Yang, Mater. Technol. 30, A181 (2015)

    Article  Google Scholar 

  26. B.H. Venkataraman and K.B.R. Varma, Solid State Ionics 167, 197 (2004)

    Article  Google Scholar 

  27. H. Yamamura, S. Takeda, and K. Kakinuma, Solid State Ionics 178, 1059 (2007)

    Article  Google Scholar 

  28. M.S. Sheikh, A.P. Sakhya, P. Sadhukhan, A. Dutta, S. Das, T.P. Sinha, Ferroelectrics 514, 146 (2017)

    Article  Google Scholar 

  29. T. Paul, A. Ghosh, J. Appl. Phys. 121, 135106 (2017)

    Article  ADS  Google Scholar 

  30. T. Okiba, K. Shozugawa, M. Matsuo, T. Hashimoto, Solid State Ionics 346, 115191 (2020)

    Article  Google Scholar 

  31. F.B. Abdallah, A. Benali, S. Azizi, M. Triki, E. Dhahri, M.P.F. Graça, M.A. Valente, J. Mater. Sci. Mater. Electron. 30, 8457 (2019)

    Article  Google Scholar 

  32. M.R. Anantharaman, K.A. Malini, S. Sindhu, E.M. Mohammed, S.K. Date, S.D. Kulkarni, P.A. Joy, P. Kurian, Bull. Mater. Sci. 24, 623 (2001)

    Article  Google Scholar 

  33. S.K. Badge, A.V. Deshpande, Solid State Ionics 334, 21 (2019)

    Article  Google Scholar 

  34. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author Paramesh Chandra acknowledges with thanks to DST-PURSE, Visva-Bharati for providing research fellowship. CSIR, Govt. of India is also acknowledged with thanks by Saroj Saha for providing a Senior Research Fellowship. We also acknowledge UGC-DAE, Indore for providing us with the dielectric measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Mandal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, P., Saha, S. & Mandal, S.K. A dielectric study of Br-doped lead-free methylammonium bismuth chloride (CH3NH3)3Bi2BrxCl9−x. Appl. Phys. A 128, 541 (2022). https://doi.org/10.1007/s00339-022-05677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05677-9

Keywords

Navigation