Skip to main content
Log in

Synthesis of sericin coated silver nanoparticles (Ag-Ser) by modified Tollens’ method and evaluation of colloidal stability

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, sericin extracted from Bombyx mori silk cocoons was integrated into the well-known Tollens’ method for synthesizing Ag-NPs. Sericin successfully acted as a stabilizer while silver amine complex [Ag(NH3)2]+ was reduced by maltose. As a result, silver nanoparticles with high stability are formed. Possible functional groups related to the stabilization of NPs were investigated by Fourier-transforms infrared spectroscopy (FT-IR). Ag-Ser NPs were characterized using particle size measurements based on dynamic light scattering (DLS) and transmission electron microscopy (TEM). According to the characterization investigations, Ag-Ser NPs have characteristic (111) face-centered cubic (FFC) plane and were spherical in shape with a narrow size distribution of 20.23 ± 6.25 nm. Overall, the sericin-modified Tollens’ method for synthesizing Ag-NPs offers a simple and non-toxic production method to form nanoparticles. Colloidal stability of nanoparticles displays an essential role since their enhanced nano-properties can be diminished by an increase in size due to aggregation and agglomeration. Therefore, the effect of pH and electrolyte concentration on particle stability was investigated through the surface charge of Ag-Ser NPs using a Zeta-potential analyzer and change in absorption spectra by UV–Vis Spectroscopy. Results obtained from this study propose a potential synthesis route for Ag NP synthesis and may extend the applicability of silver nanoparticles in biotechnological researches as aseptic and therapeutic usages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, M.S., upon reasonable request.

Abbreviations

Ag-Ser NPs:

Sericin stabilized silver nanoparticles

FT-IR spectroscopy:

Fourier-transforms infrared spectroscopy

DLS:

Dynamic light scattering

TEM:

Transmission electron microscope

HRTEM:

High-resolution transmission electron microscope image

SAED:

Selected area (electron) diffraction

References

  1. C. N. R. Rao, A. Müller, ve A. K. Cheetham, The chemistry of nanomaterials: synthesis, properties and applications, 2 Volumes. 2004. Erişim: 22 Şubat 2022. [Çevrimiçi]. Erişim adresi: https://ui.adsabs.harvard.edu/abs/2004cnsp.book.....R

  2. P.M. Mendes, Cellular nanotechnology: making biological interfaces smarter. Chem. Soc. Rev. 42(24), 9207–9218 (2013). https://doi.org/10.1039/C3CS60198F

    Article  Google Scholar 

  3. T.M. Tolaymat, A.M. El Badawy, A. Genaidy, K.G. Scheckel, T.P. Luxton, M. Suidan, An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ. 408(5), 999–1006 (2010). https://doi.org/10.1016/j.scitotenv.2009.11.003

    Article  ADS  Google Scholar 

  4. D.M. Eby, N.M. Schaeublin, K.E. Farrington, S.M. Hussain, G.R. Johnson, Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS Nano 3(4), 984–994 (2009). https://doi.org/10.1021/nn900079e

    Article  Google Scholar 

  5. D.M. Mitrano, E. Rimmele, A. Wichser, R. Erni, M. Height, B. Nowack, Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano 8(7), 7208–7219 (2014). https://doi.org/10.1021/nn502228w

    Article  Google Scholar 

  6. K. Jadhav, Phytosynthesis of silver nanoparticles: characterization, biocompatibility studies, and anticancer activity. ACS Biomater. Sci. Eng. 4(3), 892–899 (2018). https://doi.org/10.1021/acsbiomaterials.7b00707

    Article  Google Scholar 

  7. S.P. Deshmukh, S.M. Patil, S.B. Mullani, S.D. Delekar, Silver nanoparticles as an effective disinfectant: a review. Mater. Sci. Eng. C 97, 954–965 (2019). https://doi.org/10.1016/j.msec.2018.12.102

    Article  Google Scholar 

  8. T. Maneerung, S. Tokura, R. Rujiravanit, Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 72(1), 43–51 (2008). https://doi.org/10.1016/j.carbpol.2007.07.025

    Article  Google Scholar 

  9. P. Prasher, Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Colloid Interface Sci. Commun. 35, 100244 (2020). https://doi.org/10.1016/j.colcom.2020.100244

    Article  Google Scholar 

  10. M. Sivera, Silver nanoparticles modified by gelatin with extraordinary pH stability and long-term antibacterial activity. PLoS One 9(8), e103675 (2014). https://doi.org/10.1371/journal.pone.0103675

    Article  ADS  Google Scholar 

  11. H. He, In situ green synthesis and characterization of sericin-silver nanoparticle composite with effective antibacterial activity and good biocompatibility. Mater. Sci. Eng. C 80, 509–516 (2017). https://doi.org/10.1016/j.msec.2017.06.015

    Article  Google Scholar 

  12. H. Huang, X. Yang, Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr. Res. 339(15), 2627–2631 (2004). https://doi.org/10.1016/j.carres.2004.08.005

    Article  Google Scholar 

  13. A. de Lima, P.S. da Silva, A. Spinelli, Chitosan-stabilized silver nanoparticles for voltammetric detection of nitrocompounds. Sens. Actuators B Chem. 196, 39–45 (2014). https://doi.org/10.1016/j.snb.2014.02.005

    Article  Google Scholar 

  14. M. Darroudi, M.B. Ahmad, A.H. Abdullah, N.A. Ibrahim, Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. Int. J. Nanomed. 6, 569–574 (2011). https://doi.org/10.2147/IJN.S16867

    Article  Google Scholar 

  15. N.M. Zain, A.G.F. Stapley, G. Shama, Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr. Polym. 112, 195–202 (2014). https://doi.org/10.1016/j.carbpol.2014.05.081

    Article  Google Scholar 

  16. S. Mohan, Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Carbohydr. Polym. 106, 469–474 (2014). https://doi.org/10.1016/j.carbpol.2014.01.008

    Article  Google Scholar 

  17. L.K.H. Rocha, Sericin from Bombyx mori cocoons. Part I: extraction and physicochemical-biological characterization for biopharmaceutical applications. Process Biochem. 61, 163–177 (2017). https://doi.org/10.1016/j.procbio.2017.06.019

    Article  Google Scholar 

  18. O. Akturk, A. Tezcaner, H. Bilgili, M.S. Deveci, M.R. Gecit, D. Keskin, Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J. Biosci. Bioeng. 112(3), 279–288 (2011). https://doi.org/10.1016/j.jbiosc.2011.05.014

    Article  Google Scholar 

  19. Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, S. Venkateswaran, Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J. Mater. Chem. 12(3), 522–527 (2002). https://doi.org/10.1039/B107469E

    Article  Google Scholar 

  20. L. Kvítek, R. Prucek, A. Panáček, R. Novotný, J. Hrbáč, R. Zbořil, The influence of complexing agent concentration on particle size in the process of SERS active silver colloid synthesis. J. Mater. Chem. 15(10), 1099–1105 (2005). https://doi.org/10.1039/B417007E

    Article  Google Scholar 

  21. P. Aramwit, S. Kanokpanont, T. Nakpheng, T. Srichana, The effect of sericin from various extraction methods on cell viability and collagen production. Int. J. Mol. Sci. 11(5), 2200–2211 (2010). https://doi.org/10.3390/ijms11052200

    Article  Google Scholar 

  22. H. Oh, J.Y. Lee, M.K. Kim, I.C. Um, K.H. Lee, Refining hot-water extracted silk sericin by ethanol-induced precipitation. Int. J. Biol. Macromol. 48(1), 32–37 (2011). https://doi.org/10.1016/j.ijbiomac.2010.09.008

    Article  Google Scholar 

  23. H. Teramoto, M. Miyazawa, Molecular orientation behavior of silk sericin film as revealed by ATR infrared spectroscopy. Biomacromol 6(4), 2049–2057 (2005). https://doi.org/10.1021/bm0500547

    Article  Google Scholar 

  24. D.C. CastrillónMartínez, C.L. Zuluaga, A. Restrepo-Osorio, C. Álvarez-López, Characterization of sericin obtained from cocoons and silk yarns. Proced. Eng. 200, 377–383 (2017). https://doi.org/10.1016/j.proeng.2017.07.053

    Article  Google Scholar 

  25. A.-T. Le, Green synthesis of finely-dispersed highly bactericidal silver nanoparticles via modified Tollens technique. Curr. Appl. Phys. 10(3), 910–916 (2010). https://doi.org/10.1016/j.cap.2009.10.021

    Article  ADS  Google Scholar 

  26. A. Panáček, Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110(33), 16248–16253 (2006). https://doi.org/10.1021/jp063826h

    Article  Google Scholar 

  27. S. Sangsuk, Preparation of high surface area silver powder via Tollens process under sonication. Mater. Lett. 64(6), 775–777 (2010). https://doi.org/10.1016/j.matlet.2010.01.013

    Article  Google Scholar 

  28. G.A. Martínez-Castañón, N. Niño-Martínez, F. Martínez-Gutierrez, J.R. Martínez-Mendoza, F. Ruiz, Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanoparticle Res. 10(8), 1343–1348 (2008). https://doi.org/10.1007/s11051-008-9428-6

    Article  ADS  Google Scholar 

  29. M. Darroudi, M.B. Ahmad, A.K. Zak, R. Zamiri, M. Hakimi, Fabrication and Characterization of gelatin stabilized silver nanoparticles under UV-light. Int. J. Mol. Sci. 12(9), 9 (2011). https://doi.org/10.3390/ijms12096346

    Article  Google Scholar 

  30. Y.M. Mohan, K.M. Raju, K. Sambasivudu, S. Singh, B. Sreedhar, Preparation of acacia-stabilized silver nanoparticles: a green approach. J. Appl. Polym. Sci. 106(5), 3375–3381 (2007). https://doi.org/10.1002/app.26979

    Article  Google Scholar 

  31. M. Chen, Y.-G. Feng, X. Wang, T.-C. Li, J.-Y. Zhang, D.-J. Qian, Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23(10), 5296–5304 (2007). https://doi.org/10.1021/la700553d

    Article  Google Scholar 

  32. D. Philip, Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys. E Low-Dimens. Syst. Nanostruct. 42(5), 1417–1424 (2010). https://doi.org/10.1016/j.physe.2009.11.081

    Article  ADS  Google Scholar 

  33. S. Shankar, L. Jaiswal, R.S.L. Aparna, R.G.S.V. Prasad, Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Lett. 137, 75–78 (2014). https://doi.org/10.1016/j.matlet.2014.08.122

    Article  Google Scholar 

  34. E.J. Guidelli, A.P. Ramos, M.E.D. Zaniquelli, O. Baffa, Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 82(1), 140–145 (2011). https://doi.org/10.1016/j.saa.2011.07.024

    Article  ADS  Google Scholar 

  35. K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9(3), 217–227 (2016). https://doi.org/10.1016/j.jrras.2015.10.002

    Article  Google Scholar 

  36. J. Neunzehn, F. Draude, U. Golla-Schindler, H.F. Arlinghaus, H.-P. Wiesmann, Detection of protein coatings on nanoparticles surfaces by ToF-SIMS and advanced electron microscopy. Surf. Interface Anal. 45(9), 1340–1346 (2013). https://doi.org/10.1002/sia.5287

    Article  Google Scholar 

  37. J.F.A. de Oliveira, M.B. Cardoso, Partial aggregation of silver nanoparticles induced by capping and reducing agents competition. Langmuir 30(17), 4879–4886 (2014). https://doi.org/10.1021/la403635c

    Article  Google Scholar 

  38. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett. 80(19), 4249–4252 (1998). https://doi.org/10.1103/PhysRevLett.80.4249

    Article  ADS  Google Scholar 

  39. A.M. El Badawy, T.P. Luxton, R.G. Silva, K.G. Scheckel, M.T. Suidan, T.M. Tolaymat, Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol. 44(4), 1260–1266 (2010). https://doi.org/10.1021/es902240k

    Article  ADS  Google Scholar 

  40. W. Liu, Q. Zhou, J. Liu, J. Fu, S. Liu, G. Jiang, Environmental and biological influences on the stability of silver nanoparticles. Chin. Sci. Bull. 56, 2009–2015 (2011). https://doi.org/10.1007/s11434-010-4332-8

    Article  Google Scholar 

  41. I. Fernando, Y. Zhou, Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere 216, 297–305 (2019). https://doi.org/10.1016/j.chemosphere.2018.10.122

    Article  ADS  Google Scholar 

  42. C. Levard, E.M. Hotze, G.V. Lowry, G.E. Brown, Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 46(13), 6900–6914 (2012). https://doi.org/10.1021/es2037405

    Article  ADS  Google Scholar 

  43. G.K. Vertelov, Y.A. Krutyakov, O.V. Efremenkova, A.Y. Olenin, G.V. Lisichkin, A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles. Nanotechnology 19(35), 355707 (2008). https://doi.org/10.1088/0957-4484/19/35/355707

    Article  Google Scholar 

  44. F. Ahsan, T.M. Ansari, S. Usmani, P. Bagga, An insight on silk protein sericin: from processing to biomedical application. Drug Res. 68(6), 317–327 (2018). https://doi.org/10.1055/s-0043-121464

    Article  Google Scholar 

  45. S.V. Sokolov, K. Tschulik, C. Batchelor-McAuley, K. Jurkschat, R.G. Compton, Reversible or not? Distinguishing agglomeration and aggregation at the nanoscale. Anal. Chem. 87(19), 10033–10039 (2015). https://doi.org/10.1021/acs.analchem.5b02639

    Article  Google Scholar 

  46. S. Ashraf, Protein-mediated synthesis, pH-induced reversible agglomeration, toxicity and cellular interaction of silver nanoparticles. Colloids Surf. B Biointerfaces 102, 511–518 (2013). https://doi.org/10.1016/j.colsurfb.2012.09.032

    Article  Google Scholar 

  47. I. Kim, B.-T. Lee, H.-A. Kim, K.-W. Kim, S.D. Kim, Y.-S. Hwang, Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna. Chemosphere 143, 99–105 (2016). https://doi.org/10.1016/j.chemosphere.2015.06.046

    Article  ADS  Google Scholar 

  48. A.J. Kora, R. Manjusha, J. Arunachalam, Superior bactericidal activity of SDS capped silver nanoparticles: synthesis and characterization. Mater. Sci. Eng. C 29(7), 2104–2109 (2009). https://doi.org/10.1016/j.msec.2009.04.010

    Article  Google Scholar 

  49. J. Hedberg, M. Lundin, T. Lowe, E. Blomberg, S. Wold, I.O. Wallinder, Interactions between surfactants and silver nanoparticles of varying charge. J. Colloid Interface Sci. 369(1), 193–201 (2012). https://doi.org/10.1016/j.jcis.2011.12.004

    Article  ADS  Google Scholar 

  50. X. Li, J.J. Lenhart, H.W. Walker, Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir ACS J. Surf. Colloids 26(22), 16690–16698 (2010). https://doi.org/10.1021/la101768n

    Article  Google Scholar 

  51. L. Kvítek, Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. C 112(15), 5825–5834 (2008). https://doi.org/10.1021/jp711616v

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Banu Taktak Karaca and Biruni University for valuable contributions including Bradford assay, Zeta-potential measurements. Additionally, our sincere gratitude to NANOSILVER Kimya Sanayii Ticaret A.Ş. (Chemical Commerce & Industry Co.) for financial support, Dr. Yonca Alkan Göksü for FT-IR measurements and Selçuk University (ILTEK) for TEM images.

Author information

Authors and Affiliations

Authors

Contributions

MS conceptualized the research, conducted the all the experiments, analyzed the experiment data regarding to characterization of nanoparticles and drafted the manuscript. BB helped both the experiments and preparing the manuscript. SM measured particle size of the samples. ST supervised and provided the necessary materials for nanoparticle synthesis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mert Saraçoğlu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraçoğlu, M., Bacınoğlu, M.B., Mertdinç, S. et al. Synthesis of sericin coated silver nanoparticles (Ag-Ser) by modified Tollens’ method and evaluation of colloidal stability. Appl. Phys. A 128, 424 (2022). https://doi.org/10.1007/s00339-022-05568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05568-z

Keywords

Navigation