Skip to main content
Log in

Preparation of MnO2@CeO2 core–shell catalyst and its application in SCO denitration performance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nitrogen oxides (NOx) could cause acid rain, photochemical smog, and even cause serious harm to human life and health and safety. Therefore, it was urgent to control and reduce NOx. In this paper, CeO2 with a spherical structure was prepared by hydrothermal method, and the influence of different preparation conditions on the formation of CeO2 was studied by orthogonal experiments. Then CeO2 was used as the carrier, and a MnO2@CeO2 core–shell catalyst with MnO2 as the core and CeO2 as the shell was developed. And it was successfully applied to SCO denitration. Through SEM, TEM and XRD characterization, the effects of different manganese-cerium ratios and core–shell morphology on the denitration performance were studied. The results showed that: (1) When the concentration of cerium chloride solution was 0.6 mol/L, urea was 30 g, glucose was 40 g, and the hydrothermal temperature is 200 ℃, the prepared CeO2 catalyst had uniform particle size and high dispersibility. Its catalytic activity was better than that of catalysts prepared under other conditions, and the conversion rate of NO at 250 ℃ was up to 85%; (2) The denitration performance of the MnO2@CeO2 composite3 catalyst was significantly better than that of the CeO2 catalyst alone. At the same time, the MnO2@CeO2 core–shell catalyst prepared with MnCl2·4H2O as the manganese precursor had a better conversion rate of NO than that of the other two manganese precursor catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.K. Dadi, R. Daya, A. Kumar, S.Y. Joshi, H.M. An, M.J. Cunningham, N.W. Currier, Appl. Catal. B-Environ. 28, 119655 (2021). https://doi.org/10.1016/j.apcatb.2020.119655

    Article  Google Scholar 

  2. L. Zhang, Y. Jia, W. Xie, H. Shu, L. Zhang, Q. Song, Y. Yan, X. Lu, S. Song, Appl. Phys. A Mater. 128, 146 (2022). https://doi.org/10.1007/s00339-021-05221-1

    Article  ADS  Google Scholar 

  3. H.Y. Zhao, Y.H. Li, Q. Song, S.C. Liu, L. Ma, X.Q. Shu, Fuel 286, 119398 (2021). https://doi.org/10.1016/j.fuel.2020.119398

    Article  Google Scholar 

  4. D.J. Vogel, Z.R. Lee, C.A. Hanson, S.E. Henkelis, C.M. Smith, T.M. Nenoff, D.A. Dixon, J.M. Rimsza, J. Phys. Chem. C 124, 26801–26813 (2020). https://doi.org/10.1021/acs.jpcc.0c08282

    Article  Google Scholar 

  5. Q. Zhao, B.B. Chen, J. Li, X.B. Wang, M. Crocker, C. Shi, Appl. Catal. B-Environ. 277, 119215 (2020). https://doi.org/10.1016/j.apcatb.2020.119215

    Article  Google Scholar 

  6. J.N. Appaturi, R.J. Ramalingam, H.A. Al-Lohedan, F. Khoerunnisa, T.C. Ling, E.P. Ng, Fuel 288, 119573 (2021). https://doi.org/10.1016/j.fuel.2020.119573

    Article  Google Scholar 

  7. L. Qin, X.J. Gao, Q.Y. Li, J. Environ. Manage. 249, 109374 (2019). https://doi.org/10.1016/j.jenvman.2019.109374

    Article  Google Scholar 

  8. Q.H. Yan, X.T. Hou, G.C. Liu, Y.R. Li, T.Y. Zhu, Y.J. Xin, Q.J. Wang, Hazard. Mater. 400, 123260 (2020). https://doi.org/10.1016/j.jhazmat.2020.123260

    Article  Google Scholar 

  9. L. Zhang, Y. Yan, Y. Wang, L. Zhang, Y. Jia, Y. Han, Appl. Phys. A-Mater. (2022). https://doi.org/10.1007/s00339-022-05365-8

    Article  Google Scholar 

  10. N.R. Jaegers, J.K. Lai, Y. He, E. Walter, D.A. Dixon, M. Vasiliu, Y. Chen, C.M. Wang, M.Y. Hu, K.T. Mueller, I.E. Wachs, Y. Wang, J.Z. Hu, Angew. Chem. Int. Edit. 58, 12609–12616 (2019). https://doi.org/10.1002/anie.201904503

    Article  Google Scholar 

  11. Z.X. Ren, H.L. Zhang, G.Y. Wang, Y.C. Pan, Z.W. Yu, H.M. Long, ACS Omega 5, 33357–33371 (2020). https://doi.org/10.1021/acsomega.0c05194

    Article  Google Scholar 

  12. P. Kechagia, D. Koutroumpi, G. Bartzas, A. Peppas, M. Samouhos, S. Deligiannis, P.E. Tsakiridis, Sci. Total. Environ. 761, 143224 (2021). https://doi.org/10.1016/j.scitotenv.2020.143224

    Article  ADS  Google Scholar 

  13. L.N. Gan, K.Z. Li, H.J.Y. Niu, Y. Peng, J.J. Chen, Y.D. Huang, J.H. Li, Front. Environ. Sci. Eng. 15, 70 (2021). https://doi.org/10.1007/s11783-020-1363-5

    Article  Google Scholar 

  14. L. Zhang, H. Shu, Y. Wang, Y. Jia, Environ. Technol. 19, 102308 (2022). https://doi.org/10.1016/j.eti.2022.102308

    Article  Google Scholar 

  15. Q. Song, H. Zhao, S. Chang, L. Yang, P. Zhang, J. Anal. Appl. Pyrol. 151, 104927 (2020). https://doi.org/10.1016/j.jaap.2020.104927

    Article  Google Scholar 

  16. Q. Song, H. Zhao, J. Jia, L. Yang, P. Zhang, J. Clean Prod. 258, 120682 (2020). https://doi.org/10.1016/j.jclepro.2020.120682

    Article  Google Scholar 

  17. N. Czuma, K. Zarebska, M. Motak, M.E. Galvez, P. Da Costa, Fuel 267, 117139 (2020). https://doi.org/10.1016/j.fuel.2020.117139

    Article  Google Scholar 

  18. L. Zhang, X. Lu, L. Qi, H. Shu, Y. Jia, L. Zhang, Y. Yan, F. Bai, RSC Adv. 11, 15036–15043 (2021). https://doi.org/10.1039/d1ra00752a

    Article  ADS  Google Scholar 

  19. Y.F. Qi, X.W. Shan, M.T. Wang, D.D. Hu, Y.B. Song, P.L. Ge, J. Wu, Water. Air. Soil. Pollut. 231, 289 (2020). https://doi.org/10.1007/s11270-020-04644-5

    Article  ADS  Google Scholar 

  20. H. Shu, Y. Liu, Y. Jia, J. Mol. Struct. 1251, 132046 (2022). https://doi.org/10.1016/j.molstruc.2021.132046

    Article  Google Scholar 

  21. M. Wahiduzzaman, D. Lenzen, G. Maurin, N. Stock, M.T. Wharmby, Eur. J. Inorg. Chem. 32, 3626–3632 (2018). https://doi.org/10.1002/ejic.201800323

    Article  Google Scholar 

  22. M. Jablonska, B. Wolkenar, A.M. Beale, S. Pischinger, R. Palkovits, Catal. Commun. 110, 5–9 (2018). https://doi.org/10.1016/j.catcom.2018.03.003

    Article  Google Scholar 

  23. D. Felix, D. Murgulet, Atmos. Environ. 238, 117748 (2020). https://doi.org/10.1016/j.atmosenv.2020.117748

    Article  Google Scholar 

  24. H. Wang, B. Quan, G. Bo, Y. Zhang, C. Zhang, J. Clean. Prod. 267, 122258 (2020). https://doi.org/10.1016/j.jclepro.2020.122258

    Article  Google Scholar 

  25. H. Wang, L. Zhang, Y. Tian, Y. Jia, F. Li, Chemosphere 264, 128456 (2021). https://doi.org/10.1016/j.chemosphere.2020.128456

    Article  ADS  Google Scholar 

  26. J. Wang, Z. Yang, H. Wang, S. Wu, H. Lu, X. Wang, Sci. Total. Environ. (2020). https://doi.org/10.1016/j.scitotenv.2020.143670

    Article  Google Scholar 

  27. S. Li, H.Y. Gong, H.Y. Hu, H.M. Liu, Y.D. Huang, B. Fu, L.L. Wang, H. Yao, Chemosphere 254, 126700 (2020). https://doi.org/10.1016/j.chemosphere.2020.126700

    Article  ADS  Google Scholar 

  28. Q. Song, J. Bao, S. Xue, P. Zhang, S. Mu, J. Mater. Res. Technol. (2021). https://doi.org/10.1016/j.jmrt.2021.07.075

    Article  Google Scholar 

  29. H. Wang, J. Wang, G. Bo, S. Wu, L. Luo, J. Clean. Prod. 273, 123019 (2020). https://doi.org/10.1016/j.jclepro.2020.123019

    Article  Google Scholar 

  30. Y. Li, H. Zhao, X. Sui, X. Wang, H. Ji, Fuel 310, 122280 (2022). https://doi.org/10.1016/j.fuel.2021.122280

    Article  Google Scholar 

  31. V. Pospelova, J. Aubrecht, O. Kikhtyanin, K. Pacultova, D. Kubicka, ChemCatChem 11, 2169–2178 (2019). https://doi.org/10.1002/cctc.201900334

    Article  Google Scholar 

  32. H. Zhao, Q. Song, S. Liu, Y. Li, X. Wang, X. Shu, Energy Convers. Manage. 161, 13–26 (2018). https://doi.org/10.1016/j.enconman.2018.01.083

    Article  Google Scholar 

  33. H. Shu, Y. Liu, Y. Jia, Sci. Total Environ. 820, 152984 (2022). https://doi.org/10.1016/j.scitotenv.2022.152984

    Article  Google Scholar 

  34. Q. Song, H. Zhao, J. Jia, L. Yang, W. Lv, Q. Gu, X. Shu, J Anal. Appl. Pyrol. 145, 104716 (2020). https://doi.org/10.1016/j.jaap.2019.104716

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundational Research Program of Shaanxi Province [2019JL-01]; Key R & D Program in Shaanxi Province [2021SF-445]; Key Laboratory Project of Geological Guarantee for Green Coal Development in Shaanxi Province [DZBZ2021Z-01].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Han, Z., Jia, Y. et al. Preparation of MnO2@CeO2 core–shell catalyst and its application in SCO denitration performance. Appl. Phys. A 128, 568 (2022). https://doi.org/10.1007/s00339-022-05543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05543-8

Keywords

Navigation