Skip to main content
Log in

The improved saturation magnetization and initial permeability in Mn–NiZn ferrites after cooling in vacuum

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The microstructure, magnetic and elastic properties of Ni0.6–xZn0.4MnxFe2O4 (x = 0–0.6) ferrites prepared by sol–gel auto-combustion method are studied. XPS results show the presence of Ni2+, Zn2+, Mn2+, Fe3+ in specimens. XRD measurements confirm that all samples annealed in 1100 °C is pure cubic spinel structure. The lattice parameter and the grain size increase with increasing Mn2+ substitution. Mn ions gradually prefer to occupy A-site in the samples as indicated by Rietveld refinement. FTIR spectra show a shift toward low wavenumber, proving that the bond length is elongated, which causes the decrease of the elastic constants. The saturation magnetization increases monotonously from 75.6 to 81.6 emu/g as x is from 0 to 0.6. In addition, due to the transition from NiZn ferrites to MnZn ferrites, the initial permeability increases monotonously from 122.5 to 545.6. Compared with annealing process in previous work, it is found that cooling in vacuum can improve the microstructure and magnetic properties. The mixed NiZnMn can be applied in high frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. U.B. Gawas, M.M. Kothawale, R. Pednekar, S.S. Meena, N.K. Prasad, S.K. Alla, Investigation of resistivity, magnetic susceptibility and dielectric properties of nanocrystalline Ni-Mn-Zn ferrites. J. Supercond. Nov. Magn. 30, 1287 (2017)

    Article  Google Scholar 

  2. A.K. Singh, A. Verma, P.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Electrical and magnetic propertie of Mn-Ni-Zn ferrites processed by citrate precursor method. Mater. Lett. 57, 1040 (2003)

    Article  Google Scholar 

  3. C. Venkataraju, G. Sathishkumar, K. Sivakumar, Effect of nickel on the electrical properties of nanostructured MnZn ferrite. J. Alloy. Compd. 498, 203 (2010)

    Article  Google Scholar 

  4. P.P. Gauns Dessai, V.M.S. Verenkar, Synthesis and characterization of Ni0.7–xMnxZn0.3Fe2(C4H2O4)3·6N2H4 (x = 0.1–0.6): a precursor for the synthesis of nickel–manganese–zinc ferrites. J. Therm. Anal. Calorim. 142, 1399 (2020)

    Article  Google Scholar 

  5. C. Venkataraju, G. Sathishkumar, K. Sivakumar, Effect of cation distribution on the structural and magnetic properties of nickel substituted nanosized Mn–Zn ferrites prepared by co-precipitation method. J. Magn. Magn. Mater. 322, 230 (2010)

    Article  ADS  Google Scholar 

  6. A.K. Singh, A.K. Singh, T.C. Goel, R.G. Mendiratta, High performance Ni-substituted Mn-Zn ferrites processed by soft chemical technique. J. Magn. Magn. Mater. 281, 276 (2004)

    Article  ADS  Google Scholar 

  7. A.K.M. Akther Hossain, T.S. Biswas, S.T. Mahmud, T. Yanagida, H. Tanaka, T. Kawai, Enhancement of initial permeability due to Mn substitution in polycrystalline Ni0.50–xMnxZn0.50Fe2O4. J. Magn. Magn. Mater. 321, 81 (2009)

    Article  ADS  Google Scholar 

  8. U.B. Gawas, V.M.S. Verenkar, V.T. Vader, A. Jain, S.S. Meen, Effects of sintering temperature on microstructure, initial permeability and electric behaviour of Ni-Mn-Zn ferrites. Mater. Chem. Phys. 275, 125250 (2022)

    Article  Google Scholar 

  9. X. Zhou, J. Wang, L. Zhou, D. Yao, Structure, magnetic and microwave absorption properties of NiZnMn ferrite ceramics. J. Magn. Magn. Mater. 534, 168043 (2021)

    Article  Google Scholar 

  10. Z. Xueyun, Z. Yuxiu, Z. Liling, Wu. Wei Jianning, D.Y. Junqing, Effect of Gd and La doping on the structure, optical and magnetic properties of NiZnCo ferrites. Ceram. Int. 45, 6236 (2019)

    Article  Google Scholar 

  11. Ke. Sun, Z. Lan, Yu. Zhong, L. Li, H. Ji, Xu. Zhiyong, Effects of NiO addition on the structural, microstructural and electromagnetic properties of manganese-zinc ferrite. Mater. Chem. Phys. 113, 797 (2009)

    Article  Google Scholar 

  12. P. Bera, R.V. Lakshmi, B.H. Prakash, K. Tiwari, A. Shukla, A.K. Kundu, K. Biswas, H.C. Barshilia, Solution combustion synthesis, characterization, magnetic, and dielectric properties of CoFe2O4 and Co0.5M0.5Fe2O4 (M=Mn, Ni, and Zn). Phys. Chem. Chem. Phys. 22, 20087 (2020)

    Article  Google Scholar 

  13. J. Peng, Z. Peng, Z. Zhu, R. Augustine, M.M. Mahmoud, H. Tang, M. Rao, Y. Zhang, G. Li, T. Jiang, Achieving ultra-high electromagnetic wave absorption by anchoring Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on grapheme sheets using microwave-assisted polyol method. Ceram. Int. 44, 21015 (2018)

    Article  Google Scholar 

  14. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masiko, L. Kalina, J. Tkacz, V. Enev, M. Hajdúchová, Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J. Phys. Chem. Solids 107, 150 (2017)

    Article  ADS  Google Scholar 

  15. S. Liu, L. Wang, K. Chou, Synthesis of metal-doped Mn-Zn ferrite from the leaching solutions of vanadium slag using hydrothermal method. J. Magn. Magn. Mater. 449, 49 (2018)

    Article  ADS  Google Scholar 

  16. B. Parvatheeswara Rao, B. Dhanalakshmi, S. Ramesh, P.S.V. Subba Rao, Cation distribution of Ni-Zn-Mn ferrite nanoparticles. J. Magn. Magn. Mater. 456, 444 (2018)

    Article  ADS  Google Scholar 

  17. L. George, C. Viji, M. Maheen, E.M. Mohanned, Enhanced magnetic properties at low temperature of Mn substituted Ni-Zn mixed ferrite doped with Gd ions for magnetoresistive applications. Mater. Res. Bullet. 126, 110833 (2020)

    Article  Google Scholar 

  18. S.E. Shirsath, B.G. Toksha, R.H. Kadam, S.M. Patange, D.R. Mane, G.S. Jangam, A. Ghasemi, Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion. J. Phys. Chem. Solids 71, 1669 (2010)

    Article  ADS  Google Scholar 

  19. A.V. Anupama, V. Rathod, V.M. Jali, B. Sahoo, Composition dependent elastic and thermal properties of Li-Zn ferrites. J. Alloys Compounds 728, 1091 (2017)

    Article  Google Scholar 

  20. H.R. Lakshmiprasanna, V. Jagadeesha Angadi, B. Rajesh Babu, M. Pasha, K. Manjunatha, S. Matteppanavar, Effect of Pr3+-doping on the structural, elastic and magnetic properties of Mn-Zn ferrite nanoparticles prepared by solution combustion synthesis method. Chem. Data Collect. 24, 100273 (2019)

    Article  Google Scholar 

  21. S.A. Mazen, N.I. Abu-Elsaad, IR specra, elastic and dielectric properties of Li-Mn ferrite. ISRN Condens. Matter. Phys. 2012, 1 (2012)

    Article  Google Scholar 

  22. O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909 (1963)

    Article  ADS  Google Scholar 

  23. J. Hu, X. Liu, X. Kan, S. Feng, C. Liu, W. Wang, K.M. Ur Rehman, M. Shazed, S. Zhou, Q. Wu, Characterization of texture and magnetic properties of Ni0.5Zn0.5TixFe2–xO4 spinel ferrites. J. Magn. Magn. Mater. 489, 165411 (2019)

    Article  Google Scholar 

  24. N.I. Abu-Elsaad, S.A. Mazen, H.M. Salem, The effect of Zinc substitution and heat treatment on microstructural and magnetic properties of Li ferrite nanoparticles. J. Alloys Compounds 835, 155227 (2020)

    Article  Google Scholar 

  25. S. Ramesh, B. Chandra Sekhar, P.S.V. Subba Rao, B. Parvatheeswara Rao, Microstructural and magnetic behavior of mixed Ni-Zn-Co and Ni-Zn-Mn ferrites. Ceram. Int. 40, 8792 (2014)

    Article  Google Scholar 

  26. S. Zawar, S. Atiq, M. Tabasum, S. Riaz, S. Naseem, Highly stable dielectric frequency response of chemically synthesized Mn-substituted ZnFe2O4. J. Saudi Chem. Soc. 23, 417 (2019)

    Article  Google Scholar 

  27. R. Jabbar, S.H. Sabeeh, A.M. Hameed, Structural, dielectric and magnetic properties of Mn2+ doped cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 494, 165726 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51962016); Fundamental Research Funds for the Central Universities of Civil Aviation University of China (3122021123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyun Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, J., Zhou, L. et al. The improved saturation magnetization and initial permeability in Mn–NiZn ferrites after cooling in vacuum. Appl. Phys. A 128, 306 (2022). https://doi.org/10.1007/s00339-022-05422-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05422-2

Keywords

Navigation