Skip to main content
Log in

Structure, magnetic properties and giant magnetoresistance of granular cobalt–silver films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Co–Ag granular films were grown using electrodeposition technique. Atomic percentage, crystalline structure, morphological characterizations and magnetic structure of Co–Ag films were studied. Results confirm the simultaneous deposition of fcc–Ag and fcc–Co in the samples. It was found that percentage of Co in the composition of the Co–Ag film increases with the deposition current density. The granular nature of the Co–Ag films is evident by AFM micrographs. Also, magnetic force microscopy images show that magnetic structure of the all samples is composed of regular and uniform domains. The results show the magnetoresistance increases with increasing the deposition current density. Moreover, results indicated that the long-range magnetic structure with largest domain dimensions for Co–Ag films which are electrodeposited at the lowest deposition current densities leads to the lowest GMR value. The maximum value of giant magnetoresistance (GMR) is found to be 5.25% for Co–Ag films electrodeposited under current density of 12 mA/cm2. Thus, deposition conditions (e.g., applied current density) allow improving the GMR in granular Co–Ag films. The lowest AMR value is detected in the films with the highest GMR as the smallest particles are present. A zero-field-cooled magnetization measurement suggests that the ferromagnetic particle sizes with various diameters are dispersed in the Ag matrix. The Co particle size decreases with increasing the current density so that the magnetoresistance also increases. An analysis of the magnetotransport features reveal a high superparamagnetic contribution in all films. Studying the magnetic characteristics confirmed that an increase in a current density reduces the coercivity and the magnetization. This result suggests that exchange softening effect works effectively by the enhancement of the current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Kumar, S. Chaudhary, D.K. Pandya, Interactions controlled evolution of complex magnetoresistance in as-deposited Ag100−xCox nanogranular films with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 394, 245–252 (2015)

    Article  ADS  Google Scholar 

  2. M. Chadha, V. Ng, Sequential sputtered Co-HfO2 granular films. J. Magn. Magn. Mater. 426, 302–309 (2017)

    Article  ADS  Google Scholar 

  3. L. Favre, S. Stanescu, V. Dupuis, E. Bernstein, T. Epicier, P. Mélinon, A. Perez, Nanostructured thin films from mixed magnetic Co–Ag clusters. Appl. Surf. Sci. 226, 265–270 (2004)

    Article  ADS  Google Scholar 

  4. S. Cazottes, M. Coisson, A. Fnidiki, D. Lemarchand, F. Danoix, Influence of magnetic interactions on magnetic and magnetoresistive properties of Cu80Fe10Ni 10 ribbons. J. Appl. Phys. 105, 093917 (2009)

    Article  ADS  Google Scholar 

  5. I. Parsina, F. Baletto, Tailoring the structural motif of AgCo nanoalloys: core/shell versus Janus-like. The J. Phys. Chem. C 114, 1504–1511 (2010)

    Article  Google Scholar 

  6. Y.J. Chen, W.Y. Cheung, I.H. Wilson, N. Ke, S.P. Wong, J.B. Xu, Magnetic domain structures of Co 22 Ag 78 granular films observed by magnetic force microscopy. Appl. Phys. Lett. 72, 2472–2474 (1998)

    Article  ADS  Google Scholar 

  7. I.O. Shpetnyi, S.I. Vorobiov, D.M. Kondrakhova, M.S. Shevchenko, L.V. Duplik, L.V. Panina, V.I. Grebinaha, Yu.I. Gorobets, L. Satrapinskyy, T. Luciński, Correlation between the structural state and magnetoresistive properties of granular CoxAg100-x alloy thin films. Vacuum. 176, 109329 (2020)

    Article  ADS  Google Scholar 

  8. D. Su, K. Wu, R. Saha, C. Peng, J.P. Wang, Advances in magnetoresistive biosensors. Micromachines 11, 34 (2020)

    Article  Google Scholar 

  9. I.O. Shpetnyi, Magnetic and Magnetoresistive Properties of Thin Film Alloys Based on Cobalt and Copper. J. Nano-and Electr. Phys. 12(05030), 1–6 (2020)

    Google Scholar 

  10. R. Wood, Future hard disk drive systems. J. Magn. Magn. Mater. 321, 555–561 (2009)

    Article  ADS  Google Scholar 

  11. R. Coehoorn, HAM. van den Berg, MAM. Gijs, P. Grünberg, T. Rasing, and K. Röll, Magnetic multilayers and giant magnetoresistance: fundamentals and industrial applications (Vol. 37), Springer Science & Business Media, (2000).

  12. I.O. Shpetnyi, V. Ya Pak, Yu.O. Shkurdoda, S.I. Vorobiov, D.O. Derecha, A.V. Hruzevych, I.V. Sharai, A.F. Kravets, Yu.I. Gorobets, L. Satrapinskyy, T. Lucinski, Influence of the magnetic field on the structural characteristics of granular CoxAg100-x thin film alloys. Thin Solid Films. 724, 138613 (2021)

    Article  ADS  Google Scholar 

  13. S. Kumaraguru, R. Pavulraj, J. Vijayakumar, S. Mohan, Electrodeposition of cobalt/silver multilayers from deep eutectic solvent and their giant magnetoresistance. J. Alloys and Comp. 693, e1143–e1149 (2017)

    Article  Google Scholar 

  14. Y.J. Chen, W.Y. Cheung, I.H. Wilson, N. Ke, S.P. Wong, J.B. Xu, H. Sang, G. Ni, Magnetic domain structures of Co22Ag78 granular films observed by magnetic force microscopy. Appl. Phys. Lett. 72, 2472–2474 (1998)

    Article  ADS  Google Scholar 

  15. H. Wang, W.Q. Li, S.P. Wong, W.Y. Cheung, N. Ke, J.B. Xu, Lu. Xiang, Xin Yan, Magnetic force microscopy study of domain structures in magnetoresistance (Ni74Fe16Co10)x Ag1− x granular films. Mater. charact. 48, 153–158 (2002)

    Article  Google Scholar 

  16. I. Ennen, D. Kappe, T. Rempel, C. Glenske, A. Hütten, Giant magnetoresistance: basic concepts, microstructure, magnetic interactions and applications. Sensors 16, 904 (2016)

    Article  ADS  Google Scholar 

  17. D. Kumar, S. Chaudhary, D.K. Pandya, Perpendicular magnetic anisotropy and complex magnetotransport behavior of cobalt nanoparticles in silver matrix. J. Appl. Phys. 117, 17C752 (2015)

    Article  Google Scholar 

  18. M. Nasehnejad, G. Nabiyouni, Studying magnetic properties and surface roughness evolution of Ag-Co electrodeposited films. J. Magn. Magnetic Mater. 490, 165501 (2019)

    Article  Google Scholar 

  19. S.P. Wong, M.F. Chiah, W.Y. Cheung, N. Ke, J.B. Xu, Characterization and giant magnetoresistance effect in cobalt–silver granular films formed by MEVVA implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 148, 813–818 (1999)

    Article  ADS  Google Scholar 

  20. E. Jȩdryka, M. Wójcik, S. Nadolski, H. Pattyn, J. Verheyden, J. Dekoster, A. Vantomme, Heat-induced nanocluster formation in codeposited Ag1− x Cox thin films: Nuclear magnetic resonance study. J. Appl. Phys. 95, 2770–2775 (2004)

    Article  ADS  Google Scholar 

  21. J. Garcia-Torres, E. Vallés, E. Gómez, Relevant GMR in As-deposited Co− Ag electrodeposits: chronoamperometric preparation. The J. Phys. Chem. C 114, 12346–12354 (2010)

    Article  Google Scholar 

  22. S. Honda, M. Nawate, M. Tanaka, T. Okada, Giant magnetoresistance and superparamagnetic grains in Co–Ag granular films. J. Appl. Phys. 82, 764–771 (1997)

    Article  ADS  Google Scholar 

  23. J.A. De Toro, J.P. Andrés, J.A. González, J.P. Goff, A.J. Barbero, J.M. Riveiro, mImproved giant magnetoresistance in nanogranular Co Ag: The role of interparticle RKKY interactions. Phys. Rev. B. 70, 224412 (2004)

    Article  ADS  Google Scholar 

  24. Z. Shahri, S. Allahkaram, Effect of particles concentration and current density on the cobalt/hexagonal boron nitride nano-composite coatings properties. Iran. J. Mater. Sci. Eng 9, 1–7 (2012)

    Google Scholar 

  25. K. Santhi, D. Kumarsan, N. Vengidusamy, S. Arumainathan, Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses. J. Magn. Magn. Mater. 433, 202–208 (2017)

    Article  ADS  Google Scholar 

  26. H. Zaman, S. Ikeda, Y. Ueda, Magnetoresistance in Co-Ag multilayers and granular films produced by electrodeposition method. Magn, IEEE Trans on 33, 3517–3519 (1997)

    Article  ADS  Google Scholar 

  27. A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A.P. Young, Deepak Rao, Andrew Starr, F.E. Sun Zhang, F.T. Spada, A. Hutten. Parker, G. Thomas, Giant magnetoresistance in heterogeneous Cu–Co and Ag–Co alloy films. J. appl. Phys. 73, 5320–5325 (1993)

    Article  ADS  Google Scholar 

  28. C.P. Bean, J.D. Livingston, Superparamagnetism. J. Appl. Phys. 30, S120–S129 (1959)

    Article  ADS  Google Scholar 

  29. B D. Cullity, and C D. Graham. Introduction to magnetic materials. John Wiley & Sons, 2011.

  30. C. Rizal, Y. Ueda, R.K. Pokharel, Magnetotransport properties of Co–Au granular alloys. Int. J. Appl. Phys. Math. 1, 161–166 (2011)

    Article  Google Scholar 

  31. A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A.P. Young, D. Rao, A. Starr, S. Zhang, F.E. Spada, F.T. Parker, A. Hutten, G. Thomas, Giant magnetoresistance in heterogeneous Cu–Co and Ag–Co alloy films. J. Appl. Phys. 73, 5320–5325 (1993)

    Article  ADS  Google Scholar 

  32. X. Batlle, V. Franco, A. Labarta, M.L. Watson, K. O’Grady, The effect of the microstructure on the magnetic interactions in CoFe–AgCu granular films: from demagnetizing to magnetizing interactions. Appl. Phys. Let. 70, 132–134 (1997)

    Article  ADS  Google Scholar 

  33. T. Yanai, T. Shimokawa, Y. Watanabe, T. Ohgai, M. Nakano, K. Suzuki, H. Fukunaga, Effect of current density on magnetic properties of electrodeposited Fe-Ni films prepared in a citric-acid-based-bath. J. Appl. Phys. 115, 17A325 (2014)

    Article  Google Scholar 

  34. M. Spasojević, N. Ćirović, L. Ribić-Zelenović, P. Spasojević, A. Maričić, Effect of deposition current density and annealing temperature on the microstructure, hardness and magnetic properties of nanostructured nickel-iron-tungsten alloys. J. Electrochem. Soc. 161, D463–D469 (2014)

    Article  Google Scholar 

  35. H. Wang, X. Lu, X. Yan, S.P. Wong, W.Y. Cheung, N. Ke, J.B. Xu, S.J. Hu, D.C. Zeng, Z.Y. Liu, Magnetic domain structures and giant magnetoresistance of granular (Ni74Fe16Co10)35 Ag65 films. J. Appl. Phys. 88, 4216–4220 (2000)

    Article  ADS  Google Scholar 

  36. A. Gavrin, Michael H. Kelley, John Q. Xiao, C.L. Chien, Domain structures in magnetoresistive granular metals. Appl. Phys. Lett. 66(13), 1683–1685 (1995)

    Article  ADS  Google Scholar 

  37. V. Franco, X. Batlle, A. Labarta, CoFe–Cu granular alloys: From noninteracting particles to magnetic percolation. J. Appl. Phys. 85, 7328–7335 (1999)

    Article  ADS  Google Scholar 

  38. I. Bakonyi, L. Péter, Z. Rolik, K. Kiss-Szabó, Z. Kupay, J. Tóth, L.F. Kiss, J. Pádár, Decomposition of the magnetoresistance of multilayers into ferromagnetic and superparamagnetic contributions. Phys. Rev. B 70, 054427-1-054427–10 (2004)

    Article  ADS  Google Scholar 

  39. M.-H. Pan, H. Liu, J.-Z. Wang, J.-F. Jia, Q.-K. Xue, J.-L. Li, S. Qin, U.-M. Mirsaidov, X.-R. Wang, J.-T. Markert, Z. Zhang, C.-K. Shih, Quantum growth of magnetic nanoplatelets of Co on Si with high blocking temperature. Nano Lett. 5, 87–90 (2005)

    Article  ADS  Google Scholar 

  40. J.I. Gittleman, Y. Goldstein, S. Bozowski, Magnetic properties of granular nickel films. Phys. Rev. B 5, 3609 (1972)

    Article  ADS  Google Scholar 

  41. S. Zhang, S.K.J. Lenczowski, R.J.M. Van de Veerdonk, J.B. Giesbers, M.T. Johnson, JBF aan de stegge, Appl. Phys. Lett 61, 1855 (1992)

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by Iran National Science Foundation, under the grant number of 96010792. The authors gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Nasehnejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasehnejad, M., Nabiyouni, G. Structure, magnetic properties and giant magnetoresistance of granular cobalt–silver films. Appl. Phys. A 128, 162 (2022). https://doi.org/10.1007/s00339-022-05278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05278-6

Keywords

Navigation