Skip to main content
Log in

A compact microwave bandpass filter based on spoof surface plasmon polariton and substrate integrated plasmonic waveguide structures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A compact microwave bandpass filter with fishbone-shaped and hourglass-shaped groove structures based on substrate integrated plasmonic waveguide (SIPW) and spoof surface plasmon polariton (SSPP) is proposed and investigated. The dispersion and transmission characteristics of the proposed unit-cell structures of SSPP and SIPW were analyzed numerically, respectively. Numerical results indicate that the high and low cut-off frequencies of the bandpass filter can be independently adjusted by changing geometric parameters of unit-cell structures of SSPP and SIPW, respectively. The proposed microwave bandpass filter has a smaller electrical size because of its better electromagnetic (EM) field constraints than the traditional SIW ones with combed groove lines SSPPs. To verify the design method and concept, a microwave bandpass filter with fishbone-shaped and hourglass-shaped groove structures has been designed, fabricated, and measured. The results demonstrate that the proposed passband is in the range of 7.3–10.1 GHz, the return loss is higher than 10 dB and the insertion loss is less than 2 dB. The microwave bandpass filter is very compact in size, only about 0.99 λ0 × 0.35 λ0, where λ0 is the wavelength at the center frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Hunter, Theory and design of microwave filters. The Institution of Electrical Engineers (2001)

  2. T.H. Liao, K.H. Ding, L. Tsang, Broadband green’s function with higher order low wavenumber extractions for an inhomogeneous waveguide with irregular shape. Prog. Electromagn. Res. 164, 75–95 (2019)

    Article  Google Scholar 

  3. K.W. Allen, D.J.P. Dykes, D.R. Reid, R.T. Lee, Multi-objective genetic algorithm optimization of frequency selective metasurfaces to engineer Ku-passband filter responses. Prog. Electromagn. Res. 167, 19–30 (2020)

    Article  Google Scholar 

  4. S. Stefanovski, M. Potrebic, D. Tosic, Z. Stamenkovic, Compact dual-band bandpass waveguide filter with H-plane inserts. J. Circuit. Syst. Comp. 25(3), 1640015 (2016)

    Article  Google Scholar 

  5. J. Chen, Y. Ge, H. Tang, L. Zhou, J. Shi, Z. Bao, Compact LTCC dual-band bandpass filter with high selectivity using the vertically S-shaped short-ended SIR. Microw. Opt. Techn. Let. 55(6), 1345–1348 (2013)

    Article  Google Scholar 

  6. B. Yassini, Y. Ming, B. Keats, A ka-band fully tunable cavity filter. IEEE T. Microw. Theory. 60(12), 4002–4012 (2012)

    Article  Google Scholar 

  7. J. Hong, H. Shaman, An optimum ultra-wideband microstrip filter. Microw. Opt. Techn. Let. 47(3), 230–233 (2005)

    Article  Google Scholar 

  8. K. Wu, D. Desiandes, Y. Cassivi, The substrate integrated circuits–a new concept for high-frequency electronics and optoelectronics. Proc. 6th Int. Conf. Telecommun. Mod. Satell. 1, PIII-PX (2003)

  9. S. Ladan, A.B. Guntupalli, K. Wu, A high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmission. IEEE T. Circuits-I. 61(12), 3358–3366 (2014)

    Google Scholar 

  10. A. Ebrahimi, T.C. Baum, K. Wang, J. Scott, K. Ghorbani, Differential transmission lines loaded with magnetic LC resonators and application in common mode suppression. IEEE T. Circuits-I. 66(10), 3811–3821 (2019)

    Google Scholar 

  11. J. Liu, X. Zhang, Q. Xue, Dual-band transmission-line resistance compression network and its application to rectifiers. IEEE T. Circuits-I. 66(1), 119–132 (2019)

    Google Scholar 

  12. R. Chen, S. Wong, L. Zhu, Q. Chu, Wideband bandpass filter using u-slotted substrate integrated waveguide (SIW) cavities. IEEE Microw. Wirel. Co. 25(1), 1–3 (2015)

    Article  Google Scholar 

  13. M. Salehi, E. Mehrshahi, A closed-form formula for dispersion characteristics of fundamental SIW mode. IEEE Microw. Wirel. Co. 21(1), 4–6 (2011)

    Article  Google Scholar 

  14. X. Song, S. Yan, A miniaturized SIW circular cavity resonator for microfluidic sensing applications. Sensor. Actuat. A-Phys. 313, 112183 (2020)

    Article  Google Scholar 

  15. J. Zhang, X. Hu, H. Chen, F. Gao, Designer surface plasmons enable terahertz cherenkov radiation. Prog. Electromagn. Res. 169, 25–32 (2020)

    Article  Google Scholar 

  16. L. Liu, L. Ran, H. Guo, X. Chen, Z. Li, Broadband plasmonic circuitry enabled by channel domino spoof plasmons. Prog. Electromagn. Res. 164, 109–118 (2019)

    Article  Google Scholar 

  17. Z.G. Zhang, Y.J. Cheng, Y. Fan, Y.H. Zhang, Compact substrate integrated waveguide rat-race filtering couplers with arbitrary angular interval between ports. Int. J. Rf. Microw. C. E. 30(5), 22168 (2020)

    Google Scholar 

  18. F.J. Garcia-Vidal, L. Martín-Moreno, J.B. Pendry, Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A-Pure Appl. Op. 7(2), S97–S101 (2005)

    Article  ADS  Google Scholar 

  19. Y. Cheng, F. Chen, H. Luo, Triple-band perfect light absorber based on hybrid metasurface for sensing application. Nanoscale Res. Lett. 15(1), 103 (2020)

    Article  ADS  Google Scholar 

  20. Y. Cheng, X. Zhu, J. Li, F. Chen, H. Luo, L. Wu, Terahertz broadband tunable reflctive cross-polarization convertor based on complementary cross-shaped graphene metasurface. Physica E 134, 114893 (2021)

    Article  Google Scholar 

  21. Y. Cheng, J. Liu, F. Chen, H. Luo, X. Li, Optically switchable broadband metasurface absorber based on square ring shaped photoconductive silicon for terahertz waves. Phys. Lett. A 402, 127345 (2021)

    Article  Google Scholar 

  22. B.C. Pan, Z. Liao, J. Zhao, T.J. Cui, Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Opt. Express. 22(11), 13940–13950 (2014)

    Article  ADS  Google Scholar 

  23. P. Chen, L. Li, K. Yang, Q. Chen, Hybrid Spoof Surface Plasmon Polariton and Substrate Integrated Waveguide Broadband Bandpass Filter With Wide Out-of-Band Rejection. IEEE Microw. Wirel. Co. 28(11), 984–986 (2018)

    Article  MathSciNet  Google Scholar 

  24. Z.B. Yang, D.F. Guan, Q. Zhang, P. You, X.X. Hou, S.D. Xu, S.W. Yong, A hybrid substrate-integrated waveguide and spoof surface plasmon-polariton one-layer dual bandpass filter formed by resonant tunneling effect. Appl. Phys. Express. 11(11), 114101 (2018)

    Article  ADS  Google Scholar 

  25. L.F. Ye, Y. Chen, K.D. Xu, W.W. Li, Q.H. Liu, Y. Zhang, Substrate integrated plasmonic waveguide for microwave bandpass filter applications. IEEE Access 7(99), 75957–75964 (2019)

    Article  Google Scholar 

  26. P. Chen, L. Li, K. Yang, F. Hua, Design of substrate integrated plasmonic waveguide bandpass filter with T-shaped spoof surface plasmon polaritons. Electromagnetics 40(8), 563–575 (2020)

    Article  Google Scholar 

  27. L. Pan, Y. Wu, W. Wang, Y. Wei, Y. Yang, A flexible high-selectivity single-layer coplanar waveguide bandpass filter using interdigital spoof surface plasmon polaritons of bow-tie cells. IEEE T. Plasma Sci. 48(10), 3582–3588 (2020)

    Article  ADS  Google Scholar 

  28. R. S. Sangam, R. S. Kshetrimayum (2021), Hybrid spoof surface plasmon polariton and substrate integrated waveguide bandpass filter with high out-of-band rejection for X-band applications, Iet Microw. Antenna P, 15(3), 289–299

  29. L. Jidi, X. Cao, J. Gao, H. Yang, S. Li, T. Li, An ultra-thin and compact band-pass filter based on spoof surface plasmon polaritons. IEEE Access 8, 171416–171422 (2020)

    Article  Google Scholar 

  30. L. Zhao, Y. Li, Z.M. Chen, X.H. Liang, J. Wang, X. Shen, Q. Zhang, A band-pass filter based on half-mode substrate integrated waveguide and spoof surface plasmon polaritons. Sci. Rep.-UK 9(1), 1–8 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the supports Natural Science Foundation of Hubei China (Grant Nos. 2020CFB509, 2020CFB511), and Wuhan University of Science and Technology University Student Innovation Fund (Grant No. JCX2020100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Yu, J., Cheng, Y. et al. A compact microwave bandpass filter based on spoof surface plasmon polariton and substrate integrated plasmonic waveguide structures. Appl. Phys. A 128, 97 (2022). https://doi.org/10.1007/s00339-021-05250-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05250-w

Keywords

Navigation