Skip to main content
Log in

Tm3+/Yb3+co-doped SrF2 up-conversion phosphors for non-invasive optical thermometry: ratiometric approach using thermal and non-thermal coupled fluorescent emission bands

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To explore novel up-conversion (UC) system for optical temperature sensing, a series of Tm/Yb:SrF2 fluoride powders were fabricated employing a combustion synthesis (CS) technique. When Tm/Yb: SrF2 samples were excited by near-infrared radiation (~ 980 nm), four UC emission bands at ~ 477 nm (1G4 → 3H6), ~ 649 nm (1G4 → 3F4), ~ 700 nm (3F2,3 → 3H6) and ~ 771 nm (3H4 → 3H6) were observed. Non-contact thermal sensing performances based on temperature-dependent fluorescence intensity ratio (FIR) technique of thermally and non-thermally coupled energy levels were estimated in the range from 298 to 573 K. The co-doped phosphor showed, at 298 K, a maximum relative sensitivity SNTr of ~ 2.2%K−1 for the non-thermally coupled energy levels [(3H4 → 3H6)/ (1G4 → 3H6)] and a maximum relative sensitivity Sr of ~ 1.7%K−1 for the thermally coupled levels [(3F2,3 → 3H6)/(3H4 → 3H6)]. These outcomes show a good temperature-sensing performance when the non-thermally coupled levels with different temperature dependences were selected as the thermometric parameters. Hence, the Tm/Yb: SrF2 UC system has a promising prospect as optical temperature-sensing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Rakov, G.S. Maciel, RSC Adv. (2015). https://doi.org/10.1039/C4RA15804K

    Article  Google Scholar 

  2. M. Shang, C. Li, J. Lin. Chem. Soc. Rev. (2014). https://doi.org/10.1039/C3CS60314H

    Article  Google Scholar 

  3. G. Chen, C. Yang, P.N. Prasad, Acc. Chem. Res. (2013). https://doi.org/10.1021/ar300270y

    Article  Google Scholar 

  4. F. Auzel, Chem. Rev. (2004). https://doi.org/10.1021/cr020357g

    Article  Google Scholar 

  5. B. Jacquier, G. Liu.(Eds.) Spectroscopic Properties of Rare Earths in Opt. Mater; edn. (Springer, Berlin. 2010).

  6. W. Yang, X. Li, D. Chi, H. Zhang, X. Liu. Nanotechnol. (2014) http://iopscience.iop.org/0957-4484/25/48/482001

  7. L. Meisong, L. Shunguang, S. Hongtao, F. Yongzheng, H. Lili, Z. Junjie, Mater. Lett. (2006). https://doi.org/10.1016/j.matlet.2005.12.022

    Article  Google Scholar 

  8. H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, S. Xia, J. Phys. Chem. B (2004). https://doi.org/10.1021/jp048072q

    Article  Google Scholar 

  9. I. Etchart, I. Hernandez, A. Huignard, M. Berard, M. Laroche, W.P. Gillin, R.J. Curry, A.K. Cheetham, J. Appl. Phys. (2011). https://doi.org/10.1063/1.3549634

    Article  Google Scholar 

  10. A. Patra, S. Saha, M.A.R.C. Alencar, N. Rakov, G.S. Maciel, Chem. Phys. Lett. (2005). https://doi.org/10.1016/j.cplett.2005.03.135

    Article  Google Scholar 

  11. N. Rakov, Y. Xing, G.S. Maciel, ACS Appl. Nano Mater. (2020). https://doi.org/10.1021/acsanm.0c02397

    Article  Google Scholar 

  12. H. Zhou, M. Sharma, O. Berezin, D. Zuckerman, M.Y. Berezin, Chem. Phys. Chem (2016). https://doi.org/10.1002/cphc.201500753

    Article  Google Scholar 

  13. S.A. Wade, S.F. Collins, G.W. Baxter, J. Appl. Phys. (2003). https://doi.org/10.1063/1.1606526

    Article  Google Scholar 

  14. J. Zhang, YQ. Zhang, XM, Jiang. (2018) J. Alloys Compd. doi: https://doi.org/10.1016/j.jallcom.2018.03.127

  15. W. Xu, X. Gao, L. Zheng, Z. Zhang, W. Cao, Sens. Actuators B. (2012). https://doi.org/10.1016/j.snb.2012.07.009

    Article  Google Scholar 

  16. P. Cortelletti, C. Facciotti, I.X. Cantarelli, P. Canton, M. Quintanilla, F. Vetrone, A. Speghini, M. Pedroni, Opt. Mater (2017). https://doi.org/10.1016/j.optmat.2016.11.019

    Article  Google Scholar 

  17. M. Quintanilla, Y. Zhang, L.M. Liz-Marzan, Chem. Mater. (2018). https://doi.org/10.1021/acs.chemmater.8b00806

    Article  Google Scholar 

  18. H. Lu, H. Hao, Y. Gao, D. Li, G. Shi, Y. Song, Y. Wang, X. Zhang, Microchim. Acta. (2017). https://doi.org/10.1007/s00604-016-2070-6

    Article  Google Scholar 

  19. G. Chen, R. Lei, H. Wang, F. Huang, S. Zhao, S. Xu, Opt. Mater (2018). https://doi.org/10.1016/j.optmat.2018.01.039

    Article  Google Scholar 

  20. A. Kumari, A. Pandey, R. Dey, V.K. Rai, RSC Adv. (2014). https://doi.org/10.1039/C4RA01400F

    Article  Google Scholar 

  21. M. Jiao, L. Jing, C. Liu, J. Huang, X. Wei, M. Gao, Chem. Commun. (2016). https://doi.org/10.1039/C6CC01686C

    Article  Google Scholar 

  22. D. Tian, D. Gao, B. Chong, X. Liu, Dalton Trans. (2015). https://doi.org/10.1039/C4DT03735A

    Article  Google Scholar 

  23. M.B. Seelbinder, J.C. Wright, Phys. Rev. B. (1979). https://doi.org/10.1103/PhysRevB.20.4308

    Article  Google Scholar 

  24. A.A. Lyapin, S.V. Gushchin, S.V. Kuznetsov, P.A. Ryabochkina, A.S. Ermakov, VYu. Proydakova, V.V. Voronov, P.P. Fedorov, S.A. Artemov, A.D. Yapryntsev, V.K. Ivanov, Opt. Mater. Express. (2018). https://doi.org/10.1364/OME.8.001863

    Article  Google Scholar 

  25. N. Rakov, G.S. Maciel, Curr. Appl. Phys. (2017). https://doi.org/10.1016/j.cap.2017.06.001

    Article  Google Scholar 

  26. Y. Zhang, S. Xu, X. Li, J. Sun, J. Zhang, H. Zheng, H. Zhong, R. Hua, H. Xia, B. Chen, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.03.125

    Article  Google Scholar 

  27. L. Xing, Y. Xu, R. Wang, W. Xu, Z. Zhang, Optic. Lett. (2014). https://doi.org/10.1364/OL.39.000454

    Article  Google Scholar 

  28. Carnall, W. T., Crosswhite, Hannah, and Crosswhite, H. M. Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3, (United States: N. p., 1978), doi:https://doi.org/10.2172/6417825

  29. M. Misiak, K. Prorok, B. Cichy, A. Bednarkiewicz, W. Strek, Optical Mater. (2013). https://doi.org/10.1016/j.optmat.2013.01.002

    Article  Google Scholar 

  30. F.W. Ostermayer, J.P. van der Ziel, H.M. Marcos, L.G. Van Uitert, J.E. Geusic, Phys. Rev. B 3, 2698–2705 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), Brazilian Agencies. SAV thanks CNPq for the Junior post-doctoral fellowship, (process number 160920/2019-1). This work was also carried out under the support of the National Institute of Photonics (INFO) and PRONEX- Center of Excellence Program, supported by the mentioned Brazilian agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikifor Rakov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakov, N., Vieira, S.A. & Gomes, A.S.L. Tm3+/Yb3+co-doped SrF2 up-conversion phosphors for non-invasive optical thermometry: ratiometric approach using thermal and non-thermal coupled fluorescent emission bands. Appl. Phys. A 127, 936 (2021). https://doi.org/10.1007/s00339-021-05085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05085-5

Keywords

Navigation