Skip to main content
Log in

Enhanced room temperature sensitivity of undoped HfO2 nanoparticles towards formaldehyde gas

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hafnium oxide (HfO2) nanoparticulate powders were synthesized via a single step sol gel route using citric acid and ethylene glycol as chelating agent and polymerizing agent, respectively. In order to burn off the volatile components and produce crystalline HfO2 nanoparticles, the powders were calcined at moderately high temperatures ranging from 500 to 800 °C for 1 h each. The crystal structures of the nanoparticles were ascertained by powder X-ray diffraction. The nanocrystals in powder form had monoclinic structure and preferred orientation of the nanocrystals along (−111) direction was evident. The morphologies of the HfO2 nanopowders were studied by Field Emission Scanning Electron Microscope (FESEM). Morphologies of the nanopowder were observed to change with calcination temperatures. The optical properties of the HfO2 nanoparticles were evaluated by UV–Vis Diffuse Reflectance Spectroscopy (DRS). A small change in the band gap energy of HfO2 nanoparticles was observed with a change in the calcination temperature. In order to study the electrical and gas sensing properties of HfO2 nanoparticles, the powders were pressed into pellets with 12.0 mm diameter and 1.5 mm thickness. Gas sensing properties of HfO2 pellets were investigated by exposing them to formaldehyde gas inside closed chambers. The sensitivity of HfO2 towards formaldehyde gas initially increased with an increase in the calcination temperature due to increased porosity and decreased resistance of the HfO2 pellet. The HfO2 powder calcined at 700 °C showed highest sensitivity of 91.2% towards 264 ppm formaldehyde gas. The sensitivity declined with further increase in the calcination temperature because the HfO2 pellet became less porous thereby. Selectivity of the HfO2 sensor was tested with three volatile organic compound gases: acetone, ethanol and formaldehyde. Highest response was recorded for the formaldehyde gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.C. Das, S.P. Ghosh, N. Tripathy, D.H. Kim, T.I. Lee, J.M. Myoung, J.P. Kar, Ceram. Int. 42, 138 (2016)

    Article  Google Scholar 

  2. Y. Yang, K. Li, G. Liu, Z. Zhao, J. Mater. Sci. Technol. 33, 1195 (2017)

    Article  Google Scholar 

  3. K. Tiwari, S. C. Sharma, N. Hozhabri, AIP Adv. 6, 045217 (2016).

  4. A. Q. Wang, J. Wang, M. J. D’lallo, J. E. Platten, J. C. Crifasi, B. P. Roy, Thin Solid Films 592, 232 (2015).

  5. J. Gu, H. Wei, F. Ren, Q. Fan, G. Xu, X. Chen, S. Song, S. Dou, J. Zhao, Y. Li, J. Alloys Compd. 858, 158337 (2021).

  6. J. F. Ihlefeld, T. S. Luk, S. W. Smith, S. S. Fields, S. T. Jaszewski, D. M. Hirt, W. T. Riffe, S. Bender, C. Constantin, M. V. Ayyasamy, P. V. Balachandran, P. Lu, M. David Henry, P. S. Davids, J. Appl. Phys. 128, 034101 (2020).

  7. Y. Wang, J. Feng, Z. Cao, H. Zhu, Appl. Phys. A 115, 1409 (2014)

    Article  ADS  Google Scholar 

  8. D. Pradhan, S. Das, T.P. Dash, Superlattices Microstruct. 98, 203 (2016)

    Article  ADS  Google Scholar 

  9. A. Das, Adv. Mater. Lett. 7, 123 (2016)

    Article  Google Scholar 

  10. D. Salado-Leza, E. Mendoza-Mendoza, J. A. Castillo-Ramírez, C. Escudero-Lourdes, L. A. García-Cerda, Mater. Lett. 274, 128048 (2020).

  11. A. Ramadoss, S.J. Kim, J. Alloys Compd. 544, 115 (2012)

    Article  Google Scholar 

  12. A. de F. Soares, S. H. Tatumi, R. R. Rocca, L. C. Courrol, J. Lumin. 219, (2020).

  13. L.A. González, S. Gálvez-Barboza, E. Vento-Lujano, J.L. Rodríguez-Galicia, L.A. García-Cerda, Ceram. Int. 46, 13466 (2020)

    Article  Google Scholar 

  14. M. Li, Z.-X. Jin, W. Zhang, Y.-H. Bai, Y.-Q. Cao, W.-M. Li, D. Wu, A.-D. Li, Sci. Rep. 9, 10438 (2019)

    Article  ADS  Google Scholar 

  15. X.-Y. Zhang, C.-H. Hsu, S.-Y. Lien, S.-Y. Chen, W. Huang, C.-H. Yang, C.-Y. Kung, W.-Z. Zhu, F.-B. Xiong, X.-G. Meng, Nanoscale Res. Lett. 12, 324 (2017)

    Article  ADS  Google Scholar 

  16. I. Karaduman, S. Acar, Mod. Phys. Lett. B 31, 1750284 (2017)

    Article  ADS  Google Scholar 

  17. I. Karaduman, Ö. Barin, D. E. Yıldız, S. Acar, J. Appl. Phys. 118, 174501 (2015).

  18. S.M.A. Durrani, Sensors Actuators B Chem. 120, 700 (2007)

    Article  Google Scholar 

  19. S.M.A. Durrani, M.F. Al-Kuhaili, Mater. Chem. Phys. 109, 56 (2008)

    Article  Google Scholar 

  20. F. Xu, C. Zhou, and H.-P. Ho, J. Alloys Compd. 858, 158294 (2021).

  21. S. Ramanavičius, M. Petrulevičiene, J. Juodkazyte, A. Grigucevičiene, A. Ramanavičius, Materials (Basel). 13, (2020).

  22. Z. Cai, S. Park, J. Mater. Res. Technol. 9, 271 (2020)

    Article  Google Scholar 

  23. J. Huang, Y. Liu, Y. Wu, X. Li, Am. J. Anal. Chem. 08, 60 (2017)

    Article  Google Scholar 

  24. M. Dutt, A. Ratan, M. Tomar, V. Gupta, V. Singh, J. Phys. Chem. Solids 145, 109536 (2020).

  25. E. Sennik, N. Kilinc, Z.Z. Ozturk, J. Alloys Compd. 616, 89 (2014)

    Article  Google Scholar 

  26. S. Ramanavicius, A. Ramanavicius, Sensors 20, 6833 (2020)

    Article  ADS  Google Scholar 

  27. I. Karaduman, Ö. Barin, S. Acar, J. Korean Phys. Soc. 68, 1334 (2016)

    Article  ADS  Google Scholar 

  28. A. B. Mukhopadhyay, J. F. Sanz, C. B. Musgrave, Phys. Rev. B 73, 115330 (2006).

  29. A.L. Patterson, Phys. Rev. 56, 972 (1939)

    Article  ADS  Google Scholar 

  30. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014)

    Article  ADS  Google Scholar 

  31. H. Adachi, Y. Miyajima, M. Sato, N. Tsuji, Mater. Trans. 56, 671 (2015)

    Article  Google Scholar 

  32. S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Nanoscale 10, 12871 (2018)

    Article  Google Scholar 

  33. P.S. Bauer, H. Amenitsch, B. Baumgartner, G. Köberl, C. Rentenberger, P.M. Winkler, Nat. Commun. 10, 1122 (2019)

    Article  ADS  Google Scholar 

  34. F. Cerbu, O. Madia, D. V. Andreev, S. Fadida, M. Eizenberg, L. Breuil, J. G. Lisoni, J. A. Kittl, J. Strand, A. L. Shluger, V. V. Afanas’ev, M. Houssa, A. Stesmans, Appl. Phys. Lett. 108, 222901 (2016).

  35. S. Papernov, M. D. Brunsman, J. B. Oliver, Opt. Express 26, 17608 (2018).

  36. Lontio Fomekong and Saruhan, Chemosensors 7, 42 (2019)

    Article  Google Scholar 

  37. S. Cui, H. Pu, S.A. Wells, Z. Wen, S. Mao, J. Chang, M.C. Hersam, J. Chen, Nat. Commun. 6, 8632 (2015)

    Article  ADS  Google Scholar 

  38. S.-H. Chuang, H.-C. Lin, C.-H. Chen, J. Alloys Compd. 534, 42 (2012)

    Article  Google Scholar 

  39. V. Kiisk, S. Lange, K. Utt, T. Tätte, H. Mändar, I. Sildos, Phys. B Condens. Matter 405, 758 (2010)

    Article  ADS  Google Scholar 

  40. J. Ni, Q. Zhou, Z. Li, Z. Zhang, Appl. Phys. Lett. 93, 011905 (2008).

  41. N. Yamazoe, K. Shimanoe, C. Sawada, Thin Solid Films 515, 8302 (2007)

    Article  ADS  Google Scholar 

  42. Y. Xu, X. Tian, Y. Fan, Y. Sun, Sensors Actuators B Chem. 309, 127719 (2020).

  43. A. Avila-García, M. García-Hipólito, Sensors Actuators B Chem. 133, 302 (2008)

    Article  Google Scholar 

  44. S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, A. Rizzo, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 16, 3564 (1998).

  45. I. Karaduman, Ö. Barin, M. Özer, S. Acar, J. Electron. Mater. 45, 3914 (2016)

    Article  ADS  Google Scholar 

  46. V. Amiri, H. Roshan, A. Mirzaei, G. Neri, A.I. Ayesh, Sensors 20, 3096 (2020)

    Article  ADS  Google Scholar 

  47. W. Tan, Q. Yu, X. Ruan, X. Huang, Sensors Actuators B Chem. 212, 47 (2015)

    Article  Google Scholar 

  48. L. Gao, H. Fu, J. Zhu, J. Wang, Y. Chen, H. Liu, J. Mater. Res. 35, 2208 (2020)

    Article  ADS  Google Scholar 

  49. S. Lin, D. Li, J. Wu, X. Li, S.A. Akbar, Sensors Actuators B Chem. 156, 505 (2011)

    Article  Google Scholar 

  50. J. Wang, H. Deng, X. Li, C. Yang, Y. Xia, Sensors Actuators B Chem. 304, 127317 (2020).

  51. X. Fu, P. Yang, X. Xiao, D. Zhou, R. Huang, X. Zhang, F. Cao, J. Xiong, Y. Hu, Y. Tu, Y. Zou, Z. Wang, H. Gu, J. Alloys Compd. 797, 666 (2019)

    Article  Google Scholar 

  52. Z.-W. Chen, Y.-Y. Hong, Z.-D. Lin, L.-M. Liu, X.-W. Zhang, Electron. Mater. Lett. 13, 270 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhasaketan Nayak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, A., Nayak, J. Enhanced room temperature sensitivity of undoped HfO2 nanoparticles towards formaldehyde gas. Appl. Phys. A 127, 904 (2021). https://doi.org/10.1007/s00339-021-05072-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05072-w

Keywords

Navigation