Skip to main content
Log in

Mechanical properties, phase transitions, and fragmentation mechanisms of 6H, 3C, and amorphous SiC nanoparticles under compression

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The molecular dynamics simulations of quasi-static compression of SiC nanoparticles (NPs) with diameters from 5 to 40 nm are performed in the temperature range from 0.1 to 3500 K. The crystalline NPs with hexagonal, 6H-SiC, and cubic, 3C-SiC, lattices, as well as amorphous NPs, are compressed along [001], [110], and [111] crystallographic directions with either plane indenters or periodic boundary conditions. The dominant mechanism of deformation depends on the type of the SiC polymorph, NP size, temperature, and lattice orientation with respect to the compression direction. For small NPs at low temperature, the compression mostly induces amorphization of 6H-SiC NPs and formation of rock-salt phase core in 3C-SiC NPs, while the compressive stress only marginally depends on the lattice orientation. For large NPs, the deformation induces formation of multiple dislocations and slip planes that result in the material fragmentation. The morphology and number of fragments strongly depend on the SiC polymorph and lattice orientation. The fragmentation of large 6H-SiC NPs preferentially occurs along {0001} plane independently on the compression direction. An increase in temperature promotes the dislocation nucleation with subsequent fragmentation and relative motion of large fragments. As a result, the average stress at large deformation tends to increase with the NP size at small temperatures and to decrease at elevated temperatures. On average, 6H-SiC NPs compressed along [001] direction demonstrate stronger resistance to compression in the regime of plastic deformation compared to 3C-SiC NPs and other lattice orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. L. Harris, Properties of silicon carbide. (Institute of Electrical Engineers, London), No. 13 (1995)

  2. B.M. Kumar, Y.W. Kim, D.S. Lim, W.S. Seo, Influence of small amount of sintering additives on unlubricated sliding wear properties of SiC ceramics. Ceram. Int. 37(8), 3599–3608 (2011)

    Article  Google Scholar 

  3. N.P. Padture, In situ-toughened silicon carbide. J. Amer. Ceram. Soc. 77(2), 519–523 (1994)

    Article  Google Scholar 

  4. V. Presser, K.G. Nickel, Silica on silicon carbide. Crit. Rev. Solid State Mater. Sci. 33(1), 1–99 (2008)

    Article  ADS  Google Scholar 

  5. P. Mélinon, B. Masenelli, F. Tournus, A. Perez, Playing with carbon and silicon at the nanoscale. Nat. Mater. 6(7), 479–490 (2007)

    Article  ADS  Google Scholar 

  6. T. Yamamoto, M. Olsson, S. Hogmark, Three body abrasive wear of ceramic materials. Wear 174(1–2), 21–31 (1994)

    Article  Google Scholar 

  7. Y. Şahin, Abrasive wear behaviour of SiC/2014 aluminium composite. Tribol. Int. 43(5–6), 939–943 (2010)

    Article  Google Scholar 

  8. X.F. Zhang, G.Y. Lee, D. Chen, R.O. Ritchie, L.C. De Jonghe, Abrasive wear behavior of heat-treated ABC-silicon carbide. J. Am. Ceram. Soc. 86(8), 1370–1378 (2003)

    Article  Google Scholar 

  9. K. Daviau, K.K. Lee, High-pressure, high-temperature behavior of silicon carbide: A review. Crystals 8(5), 217 (2018)

    Article  Google Scholar 

  10. G. Ervin Jr., Oxidation behavior of silicon carbide. J. Amer. Ceram. Soc. 41(9), 347–352 (1958)

    Article  Google Scholar 

  11. M.F. Gazulla, M.P. Gomez, M. Orduna, A. Barba, Physico-chemical characterisation of silicon carbide refractories. J. Eur. Ceram. Soc. 26(15), 3451–3458 (2006)

    Article  Google Scholar 

  12. V. Matějka, Y. Lu, L. Jiao, L. Huang, G.S. Martynková, V. Tomášek, Effects of silicon carbide particle sizes on friction-wear properties of friction composites designed for car brake lining applications. Tribol. Int. 43(1–2), 144–151 (2010)

    Article  Google Scholar 

  13. P. Kumar, V.K. Srivastava, Tribological behaviour of C/C–SiC composites—A review. J. Adv. Ceram. 5(1), 1–12 (2016)

    Article  Google Scholar 

  14. N.S. Samir, M.A. Radwan, M.A. Sadek, H.A. Elazab, Preparation and characterization of bullet-proof vests based on polyamide fibers. Int. J. Eng. Technol. (UAE) 7(3), 1290–1294 (2018)

    Article  Google Scholar 

  15. D. Varshney, S. Shriya, M. Varshney, N. Singh, R. Khenata, Elastic and thermodynamical properties of cubic (3C) silicon carbide under high pressure and high temperature. J. Theor. Appl. Phys. 9(3), 221–249 (2015)

    Article  ADS  Google Scholar 

  16. D. Chrobak, N. Tymiak, A. Beaber, O. Ugurlu, W.W. Gerberich, R. Nowak, Deconfinement leads to changes in the nanoscale plasticity of silicon. Nature Nanotechnol. 6(8), 480–484 (2011)

    Article  ADS  Google Scholar 

  17. H.G. Craighead, Nanoelectromechanical systems. Science 290(5496), 1532–1535 (2000)

    Article  ADS  Google Scholar 

  18. J. Hu, Z. Zhong, F. Zhang, W. Xing, W. Jin, N. Xu, High-efficiency, synergistic ZnO-coated SiC photocatalytic filter with antibacterial properties. Ind. Eng. Chem. Res. 55(23), 6661–6670 (2016)

    Article  Google Scholar 

  19. Y. Du, A.B. Li, X.X. Zhang, Z.B. Tan, R.Z. Su, F. Pu, L. Geng, Enhancement of the mechanical strength of aluminum foams by SiC nanoparticles. Mater. Lett. 148, 79–81 (2015)

    Article  Google Scholar 

  20. P. Wan, L. Gao, J. Wang, Approaching ultra-low thermal conductivity in β-SiC nanoparticle packed beds through multiple heat blocking mechanisms. Scr. Mater. 128, 1–5 (2017)

    Article  ADS  Google Scholar 

  21. P. Wan, J. Wang, Highly porous nano-SiC with very low thermal conductivity and excellent high temperature behavior. J. Eur. Ceram. Soc. 38(2), 463–467 (2018)

    Article  Google Scholar 

  22. W. Wang, H. Wang, Y. Liu, H. Nie, W. Cheng, Effect of SiC nanoparticles addition on the microstructures and mechanical properties of ECAPed Mg9Al-1Si alloy. J. Mater. Res. 32(3), 615 (2017)

    Article  ADS  Google Scholar 

  23. A. Raihan Mohammad Siddique, F. Kratz, S. Mahmud, and B. Van Heyst (2019), Energy conversion by nanomaterial-based trapezoidal-shaped leg of thermoelectric generator considering convection heat transfer effect. J. Energy Resour. Technol. 141(8), 082001

  24. J. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li, Z.Y. Li, M. Zou, K. Wang, BiSbTe-based nanocomposites with high ZT: The effect of SiC nanodispersion on thermoelectric properties. Adv. Funct. Mater. 23(35), 4317–4323 (2013)

    Article  Google Scholar 

  25. H. Liu, G. She, L. Mu, W. Shi, Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation. Mater. Res. Bull. 47(3), 917–920 (2012)

    Article  Google Scholar 

  26. M. Naeimirad, A. Zadhoush, R.E. Neisiany, Fabrication and characterization of silicon carbide/epoxy nanocomposite using silicon carbide nanowhisker and nanoparticle reinforcements. J. Comp. Mater. 50(4), 435–446 (2016)

    Article  Google Scholar 

  27. N.R. Taylor, W. Kuang, M. Saeidijavash, P. Kandlakunta, Y. Zhang, L.R. Cao, Direct printing of metal contacts on 4H-SiC for radiation detection. AIP Adv. 9(9), 095041 (2019)

    Article  ADS  Google Scholar 

  28. J.S. Ponraj, S.C. Dhanabalan, G. Attolini, G. Salviati, SiC nanostructures toward biomedical applications and its future challenges. Crit. Rev. Solid State Mater. Sci. 41(5), 430–446 (2016)

    Article  ADS  Google Scholar 

  29. A.J. Rosenbloom, D.M. Sipe, Y. Shishkin, Y. Ke, R.P. Devaty, W.J. Choyke, Nanoporous SiC: A candidate semi-permeable material for biomedical applications. Biomed. Microdevices 6(4), 261–267 (2004)

    Article  Google Scholar 

  30. H. Chen, X. Wang, F. Xue, Y. Huang, K. Zhou, D. Zhang, 3D printing of SiC ceramic: Direct ink writing with a solution of preceramic polymers. J. Eur. Ceram. Soc. 38(16), 5294–5300 (2018)

    Article  Google Scholar 

  31. X. Lv, F. Ye, L. Cheng, S. Fan, Y. Liu, Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology. J. Eur. Ceram. Soc. 39(11), 3380–3386 (2019)

    Article  Google Scholar 

  32. S. Alekseev, E. Shamatulskaya, M. Volvach, S. Gryn, D. Korytko, I. Bezverkhyy, V. Iablokov, V. Lysenko, Size and surface chemistry tuning of silicon carbide nanoparticles. Langmuir 33(47), 13561–13571 (2017)

    Article  Google Scholar 

  33. N.W. Jepps, T.F. Page, Polytypic transformations in silicon carbide. Prog. Cryst. Growth Charact. Mater. 7(1–4), 259–307 (1983)

    Article  Google Scholar 

  34. T. Jikimoto, T. Tsukamoto, A. Kinoshita, Y. Satoh, M. Hirai, M. Kusaka, M. Iwami, T. Nakata, Photoemission study of 6H-SiC (0001) Si face. Appl. Surf. Sci. 117(118), 794–797 (1997)

    Article  ADS  Google Scholar 

  35. L.S. Ramsdell, Studies on silicon carbide. Am. Mineralogist: J. Earth Planet. Mater. 32(1–2), 64–82 (1947)

    Google Scholar 

  36. F. Bechstedt, P. Käckell, A. Zywietz, K. Karch, B. Adolph, K. Tenelsen, J. Furthmüller, Polytypism and properties of silicon carbide. Phys. Status Solidi B 202(1), 35–62 (1997)

    Article  ADS  Google Scholar 

  37. L. Patrick, Inequivalent sites and multiple donor and acceptor levels in SiC polytypes. Phys. Rev. 127(6), 1878 (1962)

    Article  ADS  Google Scholar 

  38. Q. He, J. Fei, C. Tang, J. Zhong, L. Meng, Mechanical behavior of silicon carbide nanoparticles under uniaxial compression. J. Nanoparticle Res. 18(3), 68 (2016)

    Article  ADS  Google Scholar 

  39. I. Szlufarska, R.K. Kalia, A. Nakano, P. Vashishta, A molecular dynamics study of nanoindentation of amorphous silicon carbide. J. Appl. Phys. 102(2), 023509 (2007)

    Article  ADS  Google Scholar 

  40. N. Zhang, Q. Deng, Y. Hong, L. Xiong, S. Li, M. Strasberg, W. Yin, Y. Zou, C.R. Taylor, G. Sawyer, Y. Chen, Deformation mechanisms in silicon nanoparticles. J. Appl. Phys. 109(6), 063534 (2011)

    Article  ADS  Google Scholar 

  41. D. Kilymis, C. Gérard, L. Pizzagalli, Ductile deformation of core-shell Si-SiC nanoparticles controlled by shell thickness. Acta Mater. 164, 560–567 (2019)

    Article  ADS  Google Scholar 

  42. B. Jiang, G.J. Weng, A theory of compressive yield strength of nano-grained ceramics. Int. J. Plast. 20(11), 2007–2026 (2004)

    Article  MATH  Google Scholar 

  43. J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B. 39(8), 5566 (1989)

    Article  ADS  Google Scholar 

  44. J. Tersoff, Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B. 41(5), 3248 (1990)

    Article  ADS  Google Scholar 

  45. F. Shimojo, I. Ebbsjö, R.K. Kalia, A. Nakano, J.P. Rino, P. Vashishta, Molecular dynamics simulation of structural transformation in silicon carbide under pressure. Phys. Rev. Lett. 84(15), 3338 (2000)

    Article  ADS  Google Scholar 

  46. P. Vashishta, R.K. Kalia, A. Nakano, J.P. Rino, Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J Appl. Phys. 101, 103515 (2007)

    Article  ADS  Google Scholar 

  47. A.C. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)

    Article  Google Scholar 

  48. R. Clausius, On a mechanical theorem applicable to heat. Philos. Mag. J. Sci. 40(265), 122–127 (1870)

    Article  Google Scholar 

  49. A.P. Thompson, S.J. Plimpton, W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J. Chem. Phys. 131(15), 154107 (2009)

    Article  ADS  Google Scholar 

  50. D.J. Evans, B.L. Holian, The Nosé-Hoover thermostat. J. Chem. Phys. 83(8), 4069–4074 (1985)

    Article  ADS  Google Scholar 

  51. O. Aluko, E. J. Pineda, T. M. Ricks, and S. M. Arnold (2019), Molecular dynamics simulations of silicon carbide, boron nitride and silicon for ceramic matrix composite applications, NASA Report 220305

  52. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117(1), 1–19 (1993)

    Article  MATH  ADS  Google Scholar 

  53. P.S. Sokolov, V.A. Mukhanov, T. Chauveau, V.L. Solozhenko, On melting of silicon carbide under pressure. J. Superhard Mater. 34(5), 339–341 (2012)

    Article  Google Scholar 

  54. Z. Mingdi, M. Matsumoto, Molecular dynamics study of 3C-SiC surface properties. Funct. Nanostructures 1(3), 120–124 (2018)

    Google Scholar 

  55. R.T. Dolloff, in Research study to determine the phase equilibrium relations of selected metal carbides at high temperatures, ed. by W.A.D.D.T.R. Report No (Research Laboratory of National Carbon Company Division of Union Carbide, 1960), pp. 60–143

    Google Scholar 

  56. K. Daviau, K.K.M. Lee, Decomposition of silicon carbide at high pressures and temperatures. Phys. Rev. B 96, 174102 (2017)

    Article  ADS  Google Scholar 

  57. P.T.B. Schaffer, A review of the structure of silicon carbide. Acta Crystallographica B 25(3), 477–488 (1969)

    Article  Google Scholar 

  58. Y. Kidokoro, K. Umemoto, K. Hirose, Y. Ohishi, Phase transition in SiC from zinc-blende to rock-salt structure and implications for carbon-rich extrasolar planets. Am. Miner. 102(11), 2230–2234 (2017)

    Article  ADS  Google Scholar 

  59. M. Yoshida, A. Onodera, M. Ueno, K. Takemura, O. Shimomura, Pressure-induced phase transition in SiC. Phys. Rev. B 48(14), 10587–10590 (1993)

    Article  ADS  Google Scholar 

  60. A. Stukowski, K. Able, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 18(8), 085001 (2010)

    Article  ADS  Google Scholar 

  61. A. Stukowski, K. Able, Dislocation detection algorithm for atomistic simulations. Model. Simul. Mater. Sci. Eng. 18(2), 025016 (2010)

    Article  ADS  Google Scholar 

  62. P.F. Zou, R.F.W. Bader, A topological definition of a Wigner-Seitz cell and the atomic scattering factor. Acta Crystallogr. A 50(6), 714–725 (1994)

    Article  Google Scholar 

  63. Y. Hong, N. Zhang, M.A. Zaeem, Metastable phase transformation and deformation twinning induced hardening-stiffening mechanism in compression of silicon nanoparticles. Acta Mater. 145, 8–18 (2018)

    Article  ADS  Google Scholar 

  64. J.J. Brian, L. Yang, X.R. Niu, G.F. Wang, Orientation-dependent deformation mechanisms of bcc niobium nanoparticles. Philos. Mag. 98(20), 1848–1864 (2018)

    Article  ADS  Google Scholar 

  65. D. Kilymis, C. Gérard, J. Amodeo, U.V. Waghmare, L. Pizzagalli, Uniaxial compression of silicon nanoparticles: an atomistic study on the shape and size effects. Acta Mater. 158, 155–166 (2018)

    Article  ADS  Google Scholar 

  66. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF through award CMMI-1554589. The computational support is provided by the Alabama Supercomputer Center. The visualization and post-processing of the results of MD simulations are performed using the OVITO software [66].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey N. Volkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3987 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayang, K.W., Volkov, A.N. Mechanical properties, phase transitions, and fragmentation mechanisms of 6H, 3C, and amorphous SiC nanoparticles under compression. Appl. Phys. A 127, 921 (2021). https://doi.org/10.1007/s00339-021-05066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05066-8

Keywords

Navigation