Skip to main content
Log in

Effect of infrared heating on physical, structural and pasting properties of starch

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, potato starch and corn starch were infrared (IR)-heated at 250 W for 45, 65 and 85 min. IR-treated starch and their polymer solutions and physical, structural and pasting properties were analysed. The maximum surface temperature measured by thermal imaging camera for potato starch and corn starch at 85-min IR heating was 92.5 °C and 82.1 °C, respectively. The moisture content of starch decreased with increasing heating period and was recorded as 4.34 and 3.16% at the end of 85-min heating for potato starch and corn starch. The tapped density of native potato starch and corn starch was measured as 789.7 and 517.3 kg/m3. The brightness ‘L’ value was found higher in corn starch (96.65) than in potato starch (92.49) after heating. The average mean diameter of potato starch is 25.22 µm which is higher than that of corn starch size. The pasting properties of native and IR-treated modified starch showed significant differences (P < 0.05). A gradual and continuous increase in viscosity was observed in the samples, and minor reductions in viscosity were observed after peak points. The pasting temperature for potato starch and corn starch was in the range of 64.21–65.81 °C and 75.23–75.63 °C, respectively. Also, FTIR and thermal properties (Tg) of native and modified starch are presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Hu, J. Chen, J. Gao, Carbohydr. Polym. 76, 291 (2009)

    Article  Google Scholar 

  2. K. Krogars, J. Heinämäki, M. Karjalainen, J. Rantanen, P. Luukkonen, J. Yliruusi, Eur. J. Pharm. Biopharm. 56, 215 (2003)

    Article  Google Scholar 

  3. E. Basiak, A. Lenart, F. Debeaufort, Int. J. Biol. Macromol. 98, 348 (2017)

    Article  Google Scholar 

  4. R.N. Tharanathan, Trends Food Sci. Technol. 14, 71 (2003)

    Article  Google Scholar 

  5. S. Whitaker, (2020).

  6. H. Gao, J. Jiang, J. Zhao, T. Su, J. Sun, T. Jia, J. Zeng, Trop. J. Pharm. Res. 18, 1375 (2019)

    Article  Google Scholar 

  7. S.O. Ismailoglu, A. Basman, Starch/Staerke 67, 528 (2015)

    Article  Google Scholar 

  8. E.E. Arce-Arce, J.A. Gallegos-Infante, N.E. Rocha-Guzmán, R.F. González-Laredo, R. Moreno-Jiménez, J.D.D. Figueroa-Cárdenas, A.N. Montelongo-Montelongo, CYTA - J. Food 12, 242 (2014)

    Article  Google Scholar 

  9. L.M. Rodríguez, The Minnesota Review 9, 149 (2018)

    Google Scholar 

  10. I. Przetaczek-Rożnowska, T. Fortuna, M. Wodniak, M. Łabanowska, P. Pająk, K. Królikowska, Int. J. Biol. Macromol. 124, 229 (2019)

    Article  Google Scholar 

  11. D. Chunli, S. Feifei, L. Yan, L. Yanghe, The Scientific Heritag 47, 1 (2020)

    Google Scholar 

  12. A.V. Orezzoli, E. Zavaleta, N. Pajares-Medina, S. Adolfo, L. Lescano, G. Linares, Asian. J. Sci. Res. 11, 56 (2018)

    Google Scholar 

  13. J.A. Stagner, S. Tseng, E.K.L. Tam, J. Polym. Environ. 20, 1046 (2012)

    Article  Google Scholar 

  14. R.S. Dassanayake, S. Acharya, N. Abidi, Adv. Sorption Process Appl 1, 1 (2019)

    Google Scholar 

  15. M. Stasiak, M. Molenda, I. Opaliñski, W. Błaszczak, Czech J. Food Sci. 31, 347 (2013)

    Article  Google Scholar 

  16. E.C. Popescu, A. Stoica, B. Elena, Fibers Polym. 13, 887 (2012)

    Article  Google Scholar 

  17. AOAC, Assoc. Off. Anal. Chem. Int. (2000).

  18. M. Olu, O. O. A. B., A. O. O., J. O., O. S.O, and S. M. O., Int. J. Food Sci. Nutr. Eng. 2, 101 (2013).

  19. M.T. Bayor, E. Tuffour, P.S. Lambon, J. Appl. Pharm. Sci. 3, 17 (2013)

    Google Scholar 

  20. M. Jouki, N. Khazaei, M. Ghasemlou, and M. Hadinezhad, Carbohydr. Polym. (2013).

  21. M. Bala, S. Handa, D. Mridula, R.K. Singh, Physicochemical, functional and rheological properties of grass pea (Lathyrus sativus L.) flour as influenced by particle size. Heliyon 6(11), e05471 (2020)

    Article  Google Scholar 

  22. M.L. Picchio, Y.G. Linck, G.A. Monti, L.M. Gugliotta, R.J. Minari, C.I.A. Igarzabal, Food Hydrocoll. 84, 424 (2018)

    Article  Google Scholar 

  23. A.S. Ginzburg, Application of Infrared Radiation in Food Processing (Leonard Hill Books, Chemical Process Engineering SeriesLondon, 1969)

    Google Scholar 

  24. N. da S. Timm, G. H. Lang, C. D. Ferreira, R. S. Pohndorf, M. de Oliveira, J. Food Process Eng. 43, 1 (2020).

  25. Q. Lin, H. Liu, P. Xu, Z. Zhang, F. Gong, Z. Wang, Chem. Eng. Trans. 59, 781 (2017)

    Google Scholar 

  26. M. Hasmadi, Food Res. 5, 266 (2021)

    Article  Google Scholar 

  27. L.X. Liu, I. Marziano, A.C. Bentham, J.D. Litster, E.T. White, T. Howes, Int. J. Pharm. 362, 109 (2008)

    Article  Google Scholar 

  28. M.G. Lomelí-ramírez, S.G. Kestur, Carbohydr. Polym. 102, 576 (2014)

    Article  Google Scholar 

  29. A. Ali, T.A. Wani, I.A. Wani, F.A. Masoodi, J. Saudi Soc. Agric. Sci. 15, 75 (2016)

    Google Scholar 

  30. F.C.F. Galvez, A.V.A. Resurreccion, J. Food Process. Preserv. 17, 93 (1993)

    Article  Google Scholar 

  31. J. Singh, R. Colussi, O. J. Mccarthy, and L. Kaur, Potato Starch and Its Modification, Second Edi (Elsevier Inc., 2016).

  32. R. Karmakar, D.K. Ban, U. Ghosh, Int. Food Res. J. 21, 597 (2014)

    Google Scholar 

  33. N.I. Nadiah, U. Uthumporn, Z.A. Syahariza, Int. J. Adv. Sci. Eng. Inf. Technol. 5, 264 (2015)

    Google Scholar 

  34. S.C. Alcázar-Alay, M.A.A. Meireles, Food Sci. Technol. 35, 215 (2015)

    Article  Google Scholar 

  35. K. Liu, Y. Hao, Y. Chen, Q. Gao, Int. J. Biol. Macromol. 132, 1044 (2019)

    Article  Google Scholar 

  36. H. Çatal, Ş Ibanoǧlu, Int. J. Food Sci. Technol. 47, 1958 (2012)

    Article  Google Scholar 

  37. C.L. Luchese, J.C. Spada, I.C. Tessaro, Ind. Crops Prod. 109, 619 (2017)

    Article  Google Scholar 

  38. I.K. Oh, I.Y. Bae, H.G. Lee, Int. J. Biol. Macromol. 108, 568 (2018)

    Article  Google Scholar 

  39. A. Gunaratne, S. Ranaweera, H. Corke, Carbohydr. Polym. 70, 112 (2007)

    Article  Google Scholar 

  40. R. K. B. S. Khatkar, J. Food Sci. Technol. (2017).

  41. J. Eke, S.C. Achinewhu, L. Sanni, I.S. Barimalaa, B. Maziya-Dixon, A. Dixon, Int. J. Food Prop. 12, 438 (2009)

    Article  Google Scholar 

  42. A. Kawabata, S. Sawayama, N. Nagashima, R.R. del Rosario, M. Nakamura, J. Jpn. Soc. Starch Sci 31, 224 (1984)

    Article  Google Scholar 

  43. V. Singh, A. Tiwari, S. Pandey, and S. K. Singh, 536 (2006).

  44. G. Lewandowicz and T. Jankowski, 8617, (2000).

  45. R. Zavareze, A. Renato, G. Dias, Carbohydr. Polym. 83, 317 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Pandiyan.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nithyadevi, K., Pandiyan, V. Effect of infrared heating on physical, structural and pasting properties of starch. Appl. Phys. A 127, 895 (2021). https://doi.org/10.1007/s00339-021-05007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05007-5

Keywords

Navigation