Skip to main content
Log in

Hexagonal microstructure, magnetic and dielectric properties of iron deficient BaNixZnxFe12−2xO19 (x = 0.0−0.5) hexaferrites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work is mainly devoted to study the magnetic properties and dielectric properties BaNixZnxFe12−2xO19 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5)/ BNZFO. These samples were synthesized by the hydrothermal method followed by calcination at 950 °C. The X-ray diffraction patterns revealed that BNZFO samples were crystallized into a hexagonal structure with the space group P63/mmc. The lattice parameters increase with the increase of Ni2+ and Zn2+ ions substitution in BNZFO. The crystallite size significantly increased from 1.3 µm to 29 µm with the increase of Ni2+ and Zn2+ ions composition. FESEM studies revealed that hexagonal plates like morphology with small fraction of rods like grains (except for x = 0.0) with an average grain size from 1.72 to 4.96 µm. The FTIR spectra showed two prominent peaks at 583 and 430 cm−1 indicated the formation of Fe–O bonds in all samples. The room temperature M-H curves showed that the coercive field was decreased from 3091 to 671.92 Oe while the increase in saturation magnetization was noticed from 48.22 to 63.37 emu/g as a function of ‘x’ from 0.1 to 0.4. The narrow optical band gap values of BNZFO were altered between 1.36 to 1.88 eV and discovered the semiconducting nature of samples. The increasing trend of dielectric constant and dielectric loss values was observed with an increase in x = 0.0 to 0.5. The Maxwell–Wagner’s interfacial polarization effect was observed in all samples (x = 0.0–0.5). The complex modulus and impedance spectroscopy analysis indicated non-Debye type relaxations and the electrical conduction mechanism due to both grain and grain boundary contributions among all samples. In view of all these properties, BNZFO samples are potential candidates for opto-electronic, magneto-optic, magnetic-recording devices, photocatalytic and sensor-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Du, Y. Liu, L. Lian, J. Du, J. Magn. MagneticMater. 469, 189–195 (2018)

    Article  ADS  Google Scholar 

  2. M.A. Almessiere, Y. Slimani, M. Sertkol, M. Nawaz, A. Baykal, I. Ercan, Results in Physics 13, 102244 (2019)

    Article  Google Scholar 

  3. J. Krishna Murthy, C. Mitra, S. Ram, A. Venimadhav, J. Alloys Compd. 545, 225 (2012)

    Article  Google Scholar 

  4. Y. Yang, F. Wang, J. Shao, Optik (Stuttg) 127, 6096–6102 (2016)

    Article  ADS  Google Scholar 

  5. S. Kanagesan, S. Jesurani, R. Velmurugan, M. Sivakumar, C. Thirupathi, T. Kalaivani, J. Mater. Sci. Mater. Electron. 23, 635 (2012)

    Article  Google Scholar 

  6. S. Kanagesan, S. Jesurani, R. Velmurugan, S. Prabu, T. Kalaivani, J. Mater. Sci. Mater. Electron. 23, 1511–1514 (2012)

    Article  Google Scholar 

  7. S. Kanagesan, S. Jesurani, R. Velmurugan, S. Prabu, T. Kalaivani, J. Mater. Sci. Mater. Electron. 23, 1575–1579 (2012)

    Article  Google Scholar 

  8. Y. Wang, L. Li, H. Liu, H. Qiu, X. Feng, Mater. Lett. 62, 2060 (2008)

    Article  Google Scholar 

  9. K.K. Mallick, P. Shepherd, R.J. Green, J. Magn. Magn. Mater. 312, 418 (2007)

    Article  ADS  Google Scholar 

  10. W. Zhang, Y. Bai, X. Han, L. Wang, X. Lu, L. Qiao, J. Alloy. Comp. 546, 234–238 (2013)

    Article  Google Scholar 

  11. G.B. Teh, D.A. Jefferson, J. Solid State Chem. 167, 254–257 (2002)

    Article  ADS  Google Scholar 

  12. Y. Yang, F. Wang, J. Shao, K.M. Batoo, D. Huang, Chin. J. Phys. 56, 1789–1798 (2018)

    Article  Google Scholar 

  13. M. Sharma, S.C. Kashyap, H. Gupta, Phys. B Condens. Matter 448, 24–28 (2014)

    Article  ADS  Google Scholar 

  14. G.R. Gordani, A. Ghasemi, A. Saidi, Ceram. Int. 40, 4945–4952 (2014)

    Article  Google Scholar 

  15. S. Kanagesan, S. Jesurani, R. Velmurugan, S. Prabu, T. Kalaivani, Mater. Res. Bull. 47, 188–192 (2012)

    Article  Google Scholar 

  16. M.J. Iqbal, S. Farooq, Mater. Res. Bull. 44, 2050–2055 (2009)

    Article  Google Scholar 

  17. P. Behera, S. Ravi, Solid State Sci. 89, 139–149 (2019)

    Article  ADS  Google Scholar 

  18. Widyastuti, Nia Sasria, Alviani AM, M Dwi Febri Rand Vania Mitha, IOP Conf. Series: Journal of Physics: Conf. Series 877 (2017) 012015

  19. V.V. Soman, V.M. Nanoti, D.K. Kulkarni, V.V. Soman, Phys. Procedia 54, 30–37 (2014)

    Article  ADS  Google Scholar 

  20. K.C.B. Naidu, W. Madhuri, Microwave Processed NiMg Ferrites: Studies on structural and magnetic properties. J. Mag. Magn. Mater. 420, 109–116 (2016)

    Article  ADS  Google Scholar 

  21. Ding Jinjun, Liu Chuanpu, Zhang Yuejie, Erugu Uppalaiah, Quan Zhiyong, Yu Rui, McCollum Ethan, Mo Songyu, Yang Sheng, Ding Haifeng, Xu Xiaohong, Tang Jinke, Yang Xiaofei, Wu Mingzhong (2020) Phys. Rev. Appl., 14: 014017

  22. F. Song, X. Shen, J. Xiang, H. Song, Mater. Chem. Phys. 120, 213–216 (2010)

    Article  Google Scholar 

  23. Moaz Waqar, Muhammad Asif Rafiq, Talha Ahmed Mirza, Fazal Ahmad Khalid·et. al. (2018) Applied Physics A, 124: 286

  24. K. Tanwar, Deepankar Sri Gyan. Prashant Gupta, Shukdev Pandey, Om Parkash and Devendra Kumar, RSC Adv. 8, 19600 (2018)

    Google Scholar 

  25. Z. Yang, C.S. Wang, X.H. Li, H.X. Zeng, Mater. Sci. Eng., B 90, 142–145 (2002)

    Article  Google Scholar 

  26. N. Raghurama, T. SubbaRao, K. ChandraBabuNaidu, Mater. Sci. Semicond. Process. 94, 136–150 (2019)

    Article  Google Scholar 

  27. C.G. Koops, Phys. Rev. 83, 121–124 (1951)

    Article  ADS  Google Scholar 

  28. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Mater. Chem. Phys. 223, 241–248 (2019)

    Article  Google Scholar 

  29. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Ceram. Int. 44, 18189–18199 (2018)

    Article  Google Scholar 

  30. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, G.R. Kumar, S. Ramesh, Ceram. Int. 44, 19408–19420 (2018)

    Article  Google Scholar 

  31. Md.T. Rahman, C.V. Ramana, J. Appl. Phys. 116 (2014) 164108

  32. S.M. El-Sayed, T.M. Meaz, M.A. Amer, H.A. ElShersaby, Phys. B 426, 137–143 (2013)

    Article  ADS  Google Scholar 

  33. S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, J. Alloy. Compd. 574, 290–298 (2013)

    Article  Google Scholar 

  34. M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Appl. Phys.A 123 (2016), https://doi.org/10.1007/s00339-016-0652-0.

  35. A. Selmi, S. Hcini, H. Rahmouni, A. Omri, M.L. Bouazizi, A. Dhahri, Phase Transit. 90, 942–954 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

My greatest acknowledgment to INUP, IISC Bangalore for providing the PPMS electromagnet, FESEM, XRD, and FTIR characterization tools equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chandra Babu Naidu.

Ethics declarations

Conflict of interest

The authors declare that we have no conflicts of interest.

Data availability statement

The data will be made immediately available based on the request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhar, D.C., Rao, T.S. & Naidu, K.C.B. Hexagonal microstructure, magnetic and dielectric properties of iron deficient BaNixZnxFe12−2xO19 (x = 0.0−0.5) hexaferrites. Appl. Phys. A 127, 841 (2021). https://doi.org/10.1007/s00339-021-05001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05001-x

Keywords

Navigation