Skip to main content
Log in

Variational model for collapsed graphene wrinkles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Various configurations are commonly observed in graphene grown by chemical vapour deposition including ripples and wrinkles. Standing self-adhered graphene wrinkles may fold over after reaching a certain height and lead to collapsed graphene wrinkles. We employ a continuous approximation to predict the morphology of collapsed graphene wrinkles supported by various metal substrates. Our model is based on a balance between the elastic bending and the van der Waals (vdW) interaction energies. We partition the geometry of the wrinkle into three constituent parts and express the total energy of the system as the sum of these three independent energy components. Variational calculus is utilised to minimise each energy component and derive parametric solutions for the shape of the corresponding part. We apply the 6–12 Lennard–Jones potential to model the strengths of the graphene–substrate vdW interactions. While we take into account two potential conformations for collapsed wrinkles, our analysis reveals that the folded bilayer is always followed by a flat region. This model also predicts the critical height of the self-adhered wrinkle providing consistent results with previous experimental and theoretical data with regards to this transition height.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)

    Article  ADS  Google Scholar 

  2. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  ADS  Google Scholar 

  3. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Article  ADS  Google Scholar 

  4. Y. Liu, C. Hu, J. Huang, B.G. Sumpter, R. Qiao, Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects. J. Chem. Phys. 142(24), 244703 (2015)

    Article  ADS  Google Scholar 

  5. L. Tapasztó, T. Dumitrică, S.J. Kim, P. Nemes-Incze, C. Hwang, L.P. Biró, Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat. Phys. 8(10), 739–742 (2012)

    Article  Google Scholar 

  6. W. Zhu, T. Low, V. Perebeinos, A.A. Bol, Y. Zhu, H. Yan, J. Tersoff, P. Avouris, Structure and electronic transport in graphene wrinkles. Nano Lett. 12(7), 3431–3436 (2012)

    Article  ADS  Google Scholar 

  7. C.H. Lui, L. Liu, K.F. Mak, G.W. Flynn, T.F. Heinz, Ultraflat graphene. Nature 462(7271), 339 (2009)

    Article  ADS  Google Scholar 

  8. A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin, Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45(10), 2017–2021 (2007)

    Article  Google Scholar 

  9. S. Chen, Q. Li, Q. Zhang, Y. Qu, H. Ji, R.S. Ruoff, W. Cai, Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology 23(36), 365701 (2012)

    Article  ADS  Google Scholar 

  10. C. Wang, Y. Liu, L. Li, H. Tan, Anisotropic thermal conductivity of graphene wrinkles. Nanoscale 6(11), 5703–5707 (2014)

    Article  ADS  Google Scholar 

  11. Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, G. Zhang, Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5(5), 3645–3650 (2011)

    Article  Google Scholar 

  12. Z. Pan, N. Liu, L. Fu, Z. Liu, Wrinkle engineering: a new approach to massive graphene nanoribbon arrays. J. Am. Chem. Soc. 133(44), 17578–17581 (2011)

    Article  Google Scholar 

  13. S. Deng, V. Berry, Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19(4), 197–212 (2016)

    Article  Google Scholar 

  14. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60 (2007)

    Article  ADS  Google Scholar 

  15. W. Wang, S. Yang, A. Wang, Observation of the unexpected morphology of graphene wrinkle on copper substrate. Sci. Rep. 7(1), 1–6 (2017)

    Article  ADS  Google Scholar 

  16. T. Verhagen, B. Pacakova, M. Bousa, U. Hubner, M. Kalbac, J. Vejpravova, O. Frank, Superlattice in collapsed graphene wrinkles. Sci. Rep. 9(1), 1–7 (2019)

    Article  Google Scholar 

  17. F. Long, P. Yasaei, R. Sanoj, W. Yao, P. Král, A. Salehi-Khojin, R. Shahbazian-Yassar, Characteristic work function variations of graphene line defects. ACS Appl. Mater. Interfaces 8(28), 18360–18366 (2016)

    Article  Google Scholar 

  18. Y. Zhang, N. Wei, J. Zhao, Y. Gong, T. Rabczuk, Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles. J. Appl. Phys. 114(6), 063511 (2013)

    Article  ADS  Google Scholar 

  19. J. Aljedani, M.J. Chen, B.J. Cox, Multi-layer graphene folds supported on a substrate: a variational model. Materials Research Express 8(1), 015002 (2020)

    Article  ADS  Google Scholar 

  20. B.J. Cox, D. Baowan, W. Bacsa, J.M. Hill, Relating elasticity and graphene folding conformation. RSC Adv. 5(71), 57515–57520 (2015)

    Article  ADS  Google Scholar 

  21. T. Dyer, N. Thamwattana, B.J. Cox, Conformation of graphene folding around single-walled carbon nanotubes. J. Mol. Model. 24(4), 99 (2018)

    Article  Google Scholar 

  22. J. Aljedani, M.J. Chen, B.J. Cox, Variational model for a rippled graphene sheet. RSC Adv. 10(27), 16016–16026 (2020)

    Article  ADS  Google Scholar 

  23. B.J. Cox, T. Dyer, N. Thamwattana, A variational model for conformation of graphene wrinkles formed on a shrinking solid metal substrate. Mater. Res. Express 7(8), 085001 (2020)

    Article  ADS  Google Scholar 

  24. J. Aljedani, M.J. Chen, B.J. Cox, Estimating the effective bending rigidity of multi-layer graphene. Mater. Res. Express (2021)

  25. G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, P.J. Kelly, Doping graphene with metal contacts. Phys. Rev. Lett. 101(2), 026803 (2008)

    Article  ADS  Google Scholar 

  26. Z. Xu, M.J. Buehler, Interface structure and mechanics between graphene and metal substrates: a first-principles study. J. Phys. Condens. Matter 22(48), 485301 (2010)

    Article  Google Scholar 

  27. D. Baowan, B.J. Cox, T.A. Hilder, J.M. Hill, N. Thamwattana, Modelling and Mechanics of Carbon-Based Nanostructured Materials (William Andrew, Oxford, 2017), pp. 59–86

  28. L. Spanu, S. Sorella, G. Galli, Nature and strength of interlayer binding in graphite. Phys. Rev. Lett. 103(19), 196401 (2009)

    Article  ADS  Google Scholar 

  29. Y. Wei, B. Wang, J. Wu, R. Yang, M.L. Dunn, Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett. 13(1), 26–30 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Mr. Aljedani is pleased to acknowledge King Abdulaziz University for the provision of a fully funded scholarship to help making this work achievable at the University of Adelaide.

Funding

This research was conducted under a fully funded scholarship provided by King Abdulaziz University for Jabr Aljedani

Author information

Authors and Affiliations

Authors

Contributions

All authors conceive and plan this study. Jabr Aljedani performs the calculations, analyses the results, and creates all figures under the supervision of Michael Chen and Barry Cox. The paper is initially designed and written by Jabr Aljedani, and the final version of the paper is reviewed, edited, and approved by Michael Chen and Barry Cox.

Corresponding author

Correspondence to Jabr Aljedani.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval:

Not applicable.

Consent to participate:

Not applicable.

Consent for publication:

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljedani, J., Chen, M.J. & Cox, B.J. Variational model for collapsed graphene wrinkles. Appl. Phys. A 127, 886 (2021). https://doi.org/10.1007/s00339-021-05000-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05000-y

Keywords

Navigation