Skip to main content
Log in

Structural and optical properties of ZnO nanoflakes/Al/glass via laser-assisted chemical bath deposition (LACBD) technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present paper, zinc oxide nanoflakes (ZnO NFs) have been prepared by a laser-assisted chemical bath deposition technique on a buffer metal layer of aluminum (Al). A continuous flow cavity design has been used, with a wavelength of 460 nm and a power output of 1 W, with a 30 min continuous laser irradiation period. The surface morphology and crystallinity have been investigated without/with post-annealing at 400 °C for 3 h, respectively. The field emission scanning electron microscope images show uniformly distributed, dense ZnO NFs and improved morphologies combined with EDX analysis. The XRD patterns showed that the synthesized ZnO NFs have a hexagonal wurtzite structure and exhibit a preferred orientation along the c-axis for all the samples. The crystallite size was found to be 8.72 nm and 18.70 nm, respectively. The Fourier Transform Infrared spectrum verifies the presence of vibrational modes of the Zn single bond O bond. UV–Visible spectroscopy (UV–Vis) absorbance spectra analysis indicated that the energy bandgap (Eg) for ZnO nanoparticles was found to be 3.25 eV and 3.4 eV, respectively. According to the results, the Al buffer layer plays an essential role in the growth orientation and growth rate of the ZnO NFs. However, the results showed that the post-annealing effectively modified the surface structures and topography properties of the polycrystalline ZnO thin films (TFs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.G. Guillén, M.I.M. Palma, B. Krishnan, D. Avellaneda, G.A. Castillo, T.K.D. Roy, S. Shaji, Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: effects of temperature and energy fluence. Mater. Chem. Phys. 162, 561–570 (2015)

    Google Scholar 

  2. G.G. Guillén, S. Shaji, M.I.M. Palma, D. Avellaneda, G.A. Castillo, T.K.D. Roy, D.I.G. Gutiérrez, B. Krishnan, Effects of ablation energy and post-irradiation on the structure and properties of titanium dioxide nanomaterials. Appl. Surf. Sci. 405, 183–194 (2017)

    ADS  Google Scholar 

  3. Ü. Özgür, D. Hofstetter, H. Morkoc, ZnO devices and applications: a review of current status and future prospects. Proc. IEEE 98(7), 1255–1268 (2010)

    Google Scholar 

  4. R. Kumar, G. Kumar, O. Al-Dossary, A. Umar, ZnO nanostructured thin films: depositions, properties and applications-a review. Mater. Express 5(1), 3–23 (2015)

    Google Scholar 

  5. M. Laurenti, V. Cauda, Porous zinc oxide thin films: synthesis approaches and applications. Coatings 8(2), 67 (2018)

    Google Scholar 

  6. I.Y.Y. Bu, Novel all solution processed heterojunction using p-type cupric oxide and n-type zinc oxide nanowires for solar cell applications. Ceram. Int. 39(7), 8073–8078 (2013)

    Google Scholar 

  7. A. Naveed Ul Haq, A. Nadhman, I. Ullah, G. Mustafa, M. Yasinzai, I. Khan, Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. J. Nanomater. (2017). https://doi.org/10.1155/2017/8510342

    Article  Google Scholar 

  8. Y. Zhang, M.K. Ram, E.K. Stefanakos, D. Yogi Goswami, Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. (2012). https://doi.org/10.1155/2012/624520

    Article  Google Scholar 

  9. A.B. Djurišić, X. Chen, Y.H. Leung, A.M.C. Ng, ZnO nanostructures: growth, properties and applications. J. Mater. Chem. 22(14), 6526–6535 (2012)

    Google Scholar 

  10. E. Ferrone, R. Araneo, A. Notargiacomo, M. Pea, A. Rinaldi, ZnO nanostructures and electrospun ZnO–polymeric hybrid nanomaterials in biomedical, health, and sustainability applications. Nanomaterials 9(10), 1449 (2019)

    Google Scholar 

  11. H. Esfahani, R. Jose, S. Ramakrishna, Electrospun ceramic nanofiber mats today: synthesis, properties, and applications. Materials 10(11), 1238 (2017)

    ADS  Google Scholar 

  12. Y. Mao, Y. Li, Y. Zou, X. Shen, L. Zhu, G. Liao, Solvothermal synthesis and photocatalytic properties of ZnO micro/nanostructures. Ceram. Int. 45(2), 1724–1729 (2019)

    Google Scholar 

  13. M.A. Borysiewicz, ZnO as a functional material, a review. Crystals 9(10), 505 (2019)

    Google Scholar 

  14. M. Laurenti, V. Cauda, ZnO nanostructures for tissue engineering applications. Nanomaterials 7(11), 374 (2017)

    Google Scholar 

  15. M. Carofiglio, S. Barui, V. Cauda, M. Laurenti, Doped zinc oxide nanoparticles: synthesis, characterization and potential use in nanomedicine. Appl. Sci. 10(15), 5194 (2020)

    Google Scholar 

  16. J. Wojnarowicz, T. Chudoba, W. Lojkowski, A review of microwave synthesis of zinc oxide nanomaterials: reactants, process parameters and morphologies. Nanomaterials 10(6), 1086 (2020)

    Google Scholar 

  17. M. Sheikh, M. Pazirofteh, M. Dehghani, M. Asghari, M. Rezakazemi, C. Valderrama, J.-L. Cortina, Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review. Chem. Eng. J. 391, 123475 (2020)

    Google Scholar 

  18. M.T. Noman, N. Amor, M. Petru, A. Mahmood, P. Kejzlar, Photocatalytic behaviour of zinc oxide nanostructures on surface activation of polymeric fibres. Polymers 13(8), 1227 (2021)

    Google Scholar 

  19. R.A. Gonçalves, R.P. Toledo, N. Joshi, O.M. Berengue, Green synthesis and applications of ZnO and TiO2 nanostructures. Molecules 26(8), 2236 (2021)

    Google Scholar 

  20. A.F. Abdulrahman, S.M. Ahmed, N.M. Ahmed, M.A. Almessiere, Enhancement of ZnO nanorods properties using modified chemical bath deposition method: effect of precursor concentration. Crystals 10(5), 386 (2020)

    Google Scholar 

  21. S. Shahzad, S. Javed, M. Usman, A review on synthesis and optoelectronic applications of nanostructured ZnO. Front. Mater. 8, 613825 (2021). https://doi.org/10.3389/fmats

    Article  Google Scholar 

  22. J. Villafuerte, F. Donatini, J. Kioseoglou, E. Sarigiannidou, O. Chaix-Pluchery, J. Pernot, V. Consonni, Zinc vacancy-hydrogen complexes as major defects in ZnO nanowires grown by chemical bath deposition. J. Phys. Chem. C 124(30), 16652–16662 (2020)

    Google Scholar 

  23. J. Elias, R. Tena-Zaera, C. Lévy-Clément, Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer. Thin Solid Films 515(24), 8553–8557 (2007)

    ADS  Google Scholar 

  24. S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, C. Charitidis, Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today 21(1), 22–37 (2018)

    Google Scholar 

  25. H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim et al., Laser processing of metal oxides: laser irradiation of metal oxide films and nanostructures: applications and advances (Adv. Mater. 14/2018). Adv. Mater. 30(14), 1870094 (2018)

    Google Scholar 

  26. H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim et al., Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30(14), 1705148 (2018)

    Google Scholar 

  27. S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27), 12871–12934 (2018)

    Google Scholar 

  28. F. Ruffino, M.G. Grimaldi, Nanostructuration of thin metal films by pulsed laser irradiations: a review. Nanomaterials 9(8), 1133 (2019)

    Google Scholar 

  29. J.J. Cheng, S.M. Nicaise, K.K. Berggren, S. Gradečak, Dimensional tailoring of hydrothermally grown zinc oxide nanowire arrays. Nano Lett. 16(1), 753–759 (2016)

    ADS  Google Scholar 

  30. H. Ghayour, H.R. Rezaie, S. Mirdamadi, A.A. Nourbakhsh, The effect of seed layer thickness on alignment and morphology of ZnO nanorods. Vacuum 86(1), 101–105 (2011)

    ADS  Google Scholar 

  31. G. Kenanakis, D. Vernardou, E. Koudoumas, N. Katsarakis, Growth of c-axis oriented ZnO nanowires from aqueous solution: the decisive role of a seed layer for controlling the wires’ diameter. J. Cryst. Growth 311(23–24), 4799–4804 (2009)

    ADS  Google Scholar 

  32. L.-W. Ji, S.-M. Peng, J.-S. Wu, W.-S. Shih, C.-Z. Wu, I.-T. Tang, Effect of seed layer on the growth of well-aligned ZnO nanowires. J. Phys. Chem. Solids 70(10), 1359–1362 (2009)

    ADS  Google Scholar 

  33. N.J. Ridha, F.K. Mohamad Alosfur, M.H.H. Jumali, S. Radiman, Effect of Al thickness on the structural and ethanol vapor sensing performance of ZnO porous nanostructures prepared by microwave-assisted hydrothermal method. Nanotechnology 31(14), 145502 (2020)

    ADS  Google Scholar 

  34. R.T. Qu, M. Stoica, J. Eckert, Z.F. Zhang, Tensile fracture morphologies of bulk metallic glass. J. Appl. Phys. 108(6), 063509 (2010)

    ADS  Google Scholar 

  35. T.N. Otto, W. Habicht, E. Dinjus, M. Zimmerman, Catalyst Characterization with FESEM/EDX by the Example of Silver-Catalyzed Epoxidation of 1, 3-Butadiene (IntechOpen, London, 2012)

    Google Scholar 

  36. L.J. Allen, A.J. D’Alfonso, B. Freitag, D.O. Klenov, Chemical mapping at atomic resolution using energy-dispersive x-ray spectroscopy. MRS Bull. 37(1), 47–52 (2012)

    Google Scholar 

  37. A.S.Z. Lahewil, Y. Al-Douri, U. Hashim, N.M. Ahmed, Structural and optical investigations of cadmium sulfide nanostructures for optoelectronic applications. Sol. Energy 86(11), 3234–3240 (2012)

    ADS  Google Scholar 

  38. A.S.Z. Lahewil, Y. Al-Douri, U. Hashim, N.M. Ahmed, Structural, analysis and optical studies of cadmium sulfide nanostructured. Procedia Eng. 53, 217–224 (2013)

    Google Scholar 

  39. A.S.Z. Lahewil, Y. Al-Douri, U. Hashim, N.M. Ahmed, Structural and morphological studies of cadmium sulfide nanostructures. Adv. Mater. Res. 795, 228–232 (2013)

    Google Scholar 

  40. J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, Q.L. Liang, Structural, optical, and electrical properties of (Zn, Al) O films over a wide range of compositions. J. Appl. Phys. 100(7), 073714 (2006)

    ADS  Google Scholar 

  41. S.-F. Tseng, Investigation of post-annealing aluminum-doped zinc oxide (AZO) thin films by a graphene-based heater. Appl. Surf. Sci. 448, 163–167 (2018)

    ADS  Google Scholar 

  42. Z. Ye, J. Li, M. Zhou, H. Wang, Y. Ma, P. Huo, Yu. Longbao, Y. Yan, Well-dispersed nebula-like ZnO/CeO2@ HNTs heterostructure for efficient photocatalytic degradation of tetracycline. Chem. Eng. J. 304, 917–933 (2016)

    Google Scholar 

  43. M.J. Kadhim, M.A. Mahdi, J.J. Hassan, A.S. Al-Asadi, Photocatalytic activity and photoelectrochemical properties of Ag/ZnO core/shell nanorods under low-intensity white light irradiation. Nanotechnology 32(19), 195706 (2021)

    ADS  Google Scholar 

  44. S. Paiman, T.H. Ling, M. Husham, S. Sagadevan, Significant effect on annealing temperature and enhancement on structural, optical and electrical properties of zinc oxide nanowires. Results Phys. 17, 103185 (2020)

    Google Scholar 

  45. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8(4), 123–134 (2014)

    ADS  Google Scholar 

  46. S.M. Mohammad, Z. Hassan, N.M. Ahmed, N.H. Al-Hardan, M. Bououdina, Fabrication of low-cost UV photo detector using ZnO nanorods grown onto nylon substrate. J. Mater. Sci. Mater. Electron. 26(3), 1322–1331 (2015)

    Google Scholar 

  47. M.J. Chithra, M. Sathya, K. Pushpanathan, Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metall. Sin. (English Letters) 28(3), 394–404 (2015)

    Google Scholar 

  48. P. Kumbhakar, D. Singh, C.S. Tiwary, A.K. Mitra, Chemical synthesis and visible photoluminescence emission from monodispersed ZnO nanoparticles. Chalcogenide Lett. 5(12), 387–394 (2008)

    Google Scholar 

  49. P. Bindu, S. Thomas, Optical properties of ZnO nanoparticles synthesised from a polysaccharide and ZnCl2. Acta Phys. Pol. A 131(6), 1474–1478 (2017)

    ADS  Google Scholar 

  50. R.N. Moussawi, D. Patra, Modification of nanostructured ZnO surfaces with curcumin: fluorescence-based sensing for arsenic and improving arsenic removal by ZnO. RSC Adv. 6(21), 17256–17268 (2016)

    ADS  Google Scholar 

  51. J. Winiarski, W. Tylus, K. Winiarska, I. Szczygieł, B. Szczygieł, XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions. J. Spectrosc. (2018). https://doi.org/10.1155/2018/2079278

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the School of Physics Universiti Sains Malaysia (USM) for providing the research facilities and support. We appreciate the financial support from the RCMO USM through the Short-Term Grant (304/PFIZIK/6315514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser M. Ahmed.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahewil, A.S.Z., Ahmed, N.M. & Azman, N.Z.N. Structural and optical properties of ZnO nanoflakes/Al/glass via laser-assisted chemical bath deposition (LACBD) technique. Appl. Phys. A 127, 836 (2021). https://doi.org/10.1007/s00339-021-04996-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04996-7

Keywords

Navigation