Skip to main content
Log in

Ultra-wideband and wide-angle linear-to-circular polarizer based on single-layer dielectric substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a wideband and wide-angle transmissive linear-to-circular polarization converter (LCPC) working in the C, X and Ku bands is proposed, which is based on a single-layer dielectric substrate. In order to increase the axial ratio bandwidth of the single-layer LCPC, a method of combining infinite length metal strips and horizontal strips is proposed, which cannot only improve the passband, but also realize large phase difference conversion. The single-layer LCPC with small size is designed and optimized, which can maintain axial ratio stability in the ultra-wide band over large incident angles. When the linear polarized (LP) wave is normal incident, the 3 dB axis ratio bandwidth of LCPC is 6.41–15.07 GHz (relative bandwidth 80.63%). When LP wave oblique incident along the yoz plane, the axial ratio bandwidth will increase with the increase of the incident angle, it is worth noting that when the incident angle reaches 45°, its 3 dB axial ratio bandwidth can reach 100.6%. Moreover, when LP wave oblique incident along the xoz plane, the insertion loss is always less than 3 dB within the working bandwidth, and the incident angle can even reach more than 70°. The measured results are in good agreement with the simulated ones. The LCPC can be widely used in multi-beam antenna, beam scanning antenna and satellite communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.R. Montejo-Garai, J. Zapata, Microw. Opt. Technol. Lett. 20, 99 (1999)

    Article  Google Scholar 

  2. A. Kajiwara, IEEE Trans. Veh. Technol. 44, 487 (1995)

    Article  Google Scholar 

  3. E. Lutz, D. Cygan, M. Dippold, F. Dolainsky, W. Papke, IEEE Trans. Veh. Technol. 40, 375 (1991)

    Article  ADS  Google Scholar 

  4. Y.-Y. Du, F.-L Liu, in Proc. 8th Int. Symp. Antennas Propag. EM Theory (2008), pp. 374–376

  5. S.E. Hosseininnejad, N. Komjani, D. Zarifi, M. Rajabi, IEICE Electron. Express 9, 117 (2012)

    Article  Google Scholar 

  6. Y. Tamayama, K. Yasui, T. Nakanishi, M. Kitano, Appl. Phys. Lett. 105, 21110 (2014)

    Article  Google Scholar 

  7. C.-C. Chang, Z. Zhao, D. Li, A.J. Taylor, S. Fan, H.-T. Chen, Phys. Rev. Lett. 123, 237401 (2019)

    Article  ADS  Google Scholar 

  8. M.-A. Joyal, M. Riel, Y. Demers, J.-J. Laurin, IEEE Trans. Antennas Propagat. 63, 5391 (2015)

    Article  ADS  Google Scholar 

  9. S.M.A. Momeni Hasan Abadi, N. Behdad, IEEE Trans. Antennas Propagat. 64, 525 (2016)

    Article  ADS  Google Scholar 

  10. F. Zhang, G.-M. Yang, Y.-Q. Jin, IEEE Trans. Antennas Propagat. 68, 6646 (2020)

    Article  ADS  Google Scholar 

  11. W. Zhang, J.-Y. Li, J. Xie, Int. J. Antennas Propagat. 2017, 1 (2017)

    Google Scholar 

  12. L. Martinez-Lopez, J. Rodriguez-Cuevas, J.I. Martinez-Lopez, A.E. Martynyuk, Antennas Wirel. Propag. Lett. 13, 153 (2014)

    Article  ADS  Google Scholar 

  13. Q. Zeng, W. Ren, H. Zhao, Z. Xue, W. Li, I.E.T. Microwaves, Antennas Propagat. 13, 216 (2019)

    Google Scholar 

  14. M.-A. Joyal, J.-J. Laurin, IEEE Trans. Antennas Propagat. 60, 3007 (2012)

    Article  ADS  Google Scholar 

  15. S. Yan, G.A.E. Vandenbosch, Appl. Phys. Lett. 102, 103503 (2013)

    Article  ADS  Google Scholar 

  16. Y.Z. Cheng, Y. Nie, Z.Z. Cheng, X. Wang, R.Z. Gong, Appl. Phys. B 116, 129 (2014)

    Article  ADS  Google Scholar 

  17. Z.Z. Cheng, Y.Z. Cheng, C. Fang, J. Electromagn. Waves Appl. 28, 485 (2014)

    Article  Google Scholar 

  18. H. Cao, X. Wu, Z. Chen, C. Zhu, X. Tan, Y. Zhang, Opt. Commun. 381, 48 (2016)

    Article  ADS  Google Scholar 

  19. H. Cao, J. Liang, X. Wu, Y. Pi, H. Xu, J. Liu, Z. Meng, Y. Zhang, Opt. Commun. 370, 311 (2016)

    Article  ADS  Google Scholar 

  20. T.-T. Kim, S.S. Oh, H.-S. Park, R. Zhao, S.-H. Kim, W. Choi, B. Min, O. Hess, Sci. Rep. 4, 5864 (2014)

    Article  Google Scholar 

  21. X.J. Zhang, S.J. Li, Int J RF Microwave Comput-Aided Eng 1 (2019)

  22. H.B. Wang, Y.J. Cheng, IEEE Trans. Antennas Propagat. 67, 4296 (2019)

    Article  ADS  Google Scholar 

  23. A.K. Fahad, C. Ruan, S.A.K.M. Ali, R. Nazir, T.U. Haq, S. Ullah, W. He, I.E.E.E. Microw, Wireless Compon. Lett. 30, 351 (2020)

    Article  Google Scholar 

  24. T.K.T. Nguyen, T.M. Nguyen, H.Q. Nguyen, T.N. Cao, D.T. Le, X.K. Bui, S.T. Bui, C.L. Truong, D.L. Vu, T.Q.H. Nguyen, Sci. Rep. 11, 2032 (2021)

    Article  Google Scholar 

  25. X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, X. Luo, Microw. Opt. Technol. Lett. 54, 1770 (2012)

    Article  Google Scholar 

  26. P. Fei, Z. Shen, X. Wen, F. Nian, IEEE Trans. Antennas Propagat. 63, 4609 (2015)

    Article  ADS  Google Scholar 

  27. Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, A. Zhang, J. Appl. Phys. 117, 44501 (2015)

    Article  Google Scholar 

  28. B. Lin, J. Guo, L. Lv, J. Wu, Z. Liu, B. Huang, Int. J. RF Microw. Comput. Aided. Eng. 29, e21750 (2019)

    Article  Google Scholar 

  29. M. Euler, V. Fusco, R. Cahill, R. Dickie, I.E.T. Microw, Antennas Propag. 4, 1764 (2010)

    Google Scholar 

  30. O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A.V. Raisanen, S.A. Tretyakov, IEEE Trans. Antennas Propagat. 56, 1624 (2008)

    Article  ADS  Google Scholar 

  31. G. Granet, B. Guizal, Opt. Commun. 255, 1 (2005)

    Article  ADS  Google Scholar 

  32. D.M. Pozar, Microwave Engineering, 4th edn. (Wiley, New York, 2011), pp. 165–222

    Google Scholar 

  33. A.R. Harish, M. Sachidananda, Antennas and wave propagation (Oxford University Press, 2007)

  34. Y.W. Hu, Y. Wang, Z.M. Yan, H.C. Zhou, Appl. Phys. A 125(6), 398 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongcheng Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Zhao, G., Yan, Z. et al. Ultra-wideband and wide-angle linear-to-circular polarizer based on single-layer dielectric substrates. Appl. Phys. A 127, 821 (2021). https://doi.org/10.1007/s00339-021-04950-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04950-7

Keywords

Navigation