Skip to main content

Advertisement

Log in

Effects of cavity in a multi-resonant piezoelectric energy harvester with one straight and two L-shaped branches

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

From past few years, the continuous development in miniature technology not only reduced the size of electronic devices but also decreased their power consumption and hence opened the doors to make these low powered devices such as self-powered using vibration-based piezoelectric energy harvesting technology. In this paper, a generalized multi-resonant piezoelectric energy harvester has been proposed, in which the effects of cavity involvement have been analysed. Here, the mathematical model has been derived by considering that the proposed device consists of a system of one straight and two L-shaped beam-mass branches which are connected to the free vibrating end of the single clamped unimorph piezoelectric energy harvester. The comparative study of mathematical and simulation modelling claimed that the proposed device structure can provide three closed resonant peaks below 10 Hz frequency range under low value (0.2g) of input vibrations. Further, for segregated and non-segregated types of L-shaped beams, the performance of the proposed device has been analysed with two types of cavity arrangements. From the results, it has been observed that when the cavity is placed at the centre of straight branch and vertical parts of the two non-segregated L-shaped branches, the increased values of voltage (50.4, 23 and 30.7 V) and power response (12600, 2640 and 4720 \(\mu\)W) have been obtained at three low resonant frequencies (6.3, 6.8 and 7.4 Hz). To the best of \(authors^{'}s\) knowledge, such high values of voltage and power response below 10 Hz frequency range have been first time reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Roundy, P.K. Wright, J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)

    Article  Google Scholar 

  2. G. Poulin, E. Sarraute, F. Costa, Generation of electrical energy for portable devices: Comparative study of an electromagnetic and piezoelectric system. Sens. Actuator A Phys. 116, 461–471 (2004)

    Article  Google Scholar 

  3. A. Erturk, P.A. Tarazaga, J.R. Farmer, D.J. Inman, Effect of strain nodes and electrode conguration on piezoelectric energy harvesting from cantilevered beams. J. Vib. Acoust. 131, 011010–011021 (2009)

    Article  Google Scholar 

  4. S. Saadon, O. Sidek, A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers. Manag. 52(1), 500–504 (2011)

    Article  Google Scholar 

  5. G. Tang, J.Q. Liu, B. Yang, J.B. Luo, H.S. Liu, Y.G. Li, C.D. Yang, V.D. Dao, K. Tanaka, S. Sugiyama, Piezoelectric MEMS low-level vibration energy harvester with PMN-PT single crystal cantilever source. Electron Lett. 48(13), 784–786 (2012)

    Article  ADS  Google Scholar 

  6. C. Eichhorn, F. Goldschmidtboeing, P. Woias, Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam source. J. Micromech. Microeng. 19(9), 094006 (2009)

    Article  ADS  Google Scholar 

  7. N.A. Aboulfotoh, M.H. Arafa, S.M. Megahed, A self-tuning resonator for vibration energy harvesting source. Sens. Actuators A 201, 328–334 (2013)

    Article  Google Scholar 

  8. Wu, W. J., Chen,Y. Y., Lee, B. S., He, J. J. and Peng, Y. T., Tunable resonant frequency power harvesting devices.,In Proc Smart Structures and Materials: Damping and Isolation. Bellingham, (2006)

  9. A. Erturk, J.M. Renno, D.J. Inman, Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 20, 529–543 (2009)

    Article  Google Scholar 

  10. S. Qi, R. Shuttleworth, S.O. Oyadiji, J. Wright, Design of a multiresonant beam for broadband piezoelectric energy harvesting. Smart Mater. Struct. 19, 094009 (2010)

    Article  ADS  Google Scholar 

  11. A. Hajati, S.G. Kim, Ultra-wide bandwidth piezoelectric energy harvesting. Appl. Phys. Lett. 99, 083105 (2011)

    Article  ADS  Google Scholar 

  12. Z. Liang, C. Xu, B. Ren, H. Luo, D. Wang, A low frequency and broadband piezoelectric energy harvester using asymmetrically serials connected double clamped-clamped beams. Jpn. J. Appl. Phys. 53, 087101 (2014)

    Article  ADS  Google Scholar 

  13. X. Xiong, S.O. Oyadiji, Modal optimization of doubly clamped base-excited multilayer broadband vibration energy harvesters. J. Intell. Mater. Syst. Struct. 54, 1–26 (2014)

    Google Scholar 

  14. G. Zhang, J. Hu, A branched beam-based vibration energy harvester. J. Electron Mater. 43, 3912–3921 (2014)

    Article  ADS  Google Scholar 

  15. R.M. Toyabur, M. Salauddin, J.Y. Park, Design and experiment of piezoelectric multimodal energy harvester for low frequency vibration. Ceram. Int. 43, S675–S681 (2017)

    Article  Google Scholar 

  16. X. Li, K. Yu, D. Upadrashta, Y. Yang, Multi-branch sandwich piezoelectric energy harvester: mathematical modeling and validation. Smart Mater. Struct. 28, 035010 (2018)

    Article  ADS  Google Scholar 

  17. D. Upadrashta, Y. Yang, Trident-shaped multimodal piezoelectric energy harvester. J. Aerosp. Eng. 31, 04018070 (2018)

    Article  Google Scholar 

  18. X. Li, D. Upadrashta, K. Yu, Y. Yang, Analytical modeling and validation of multi-mode piezoelectric energy harvester. Mech. Syst. Sig. Process 124, 613–631 (2019)

    Article  ADS  Google Scholar 

  19. S.M. Shahruz, Design of mechanical band-pass filters for energy scavenging. J. Sound Vib. 292, 987–998 (2006)

    Article  ADS  Google Scholar 

  20. H. Xue, Y. Hu, Q.M. Wang, Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(7), 1632–1639 (2008)

    Article  Google Scholar 

  21. A.R. Reddy, M. Umapathy, D. Ezhilarasi, G. Uma, Improved energy harvesting from vibration by introducing cavity in a cantilever beam. J. Vib. Control 22(13), 3057–3066 (2014)

    Article  MathSciNet  Google Scholar 

  22. A.R. Reddy, M. Umapathy, D. Ezhilarasi, G. Uma, Cantilever beam with trapezoidal cavity for improved energy harvesting. Int. J. Precis. Eng. Manuf. 16(8), 1875–18816 (2015)

    Article  Google Scholar 

  23. A.R. Reddy, M. Umapathy, D. Ezhilarasi, G. Uma, Modeling and Experimental investigations on stepped beam with cavity for energy harvesting. Smart Struct. Syst. 16(4), 623–640 (2015)

    Article  Google Scholar 

  24. S.S. Raju, M. Umapathy, G. Uma, Cantilever piezoelectric energy harvester with multiple cavities. Smart Mater. Struct. 24(11), 115023 (2015)

    Article  ADS  Google Scholar 

  25. R. Usharani, G. Uma, M. Umapathy, Design of high output broadband piezoelectric energy harvester with double tapered cavity beam. Int. J. Precision Eng. Manuf.-Green Technol. 3, 343–351 (2016)

    Article  Google Scholar 

  26. U. Ramalingam, U. Gandhi, U. Mangalanathan, S.B. Choi, A new piezoelectric energy harvester using two beams with tapered cavity for high power and wide broadband. Int. J. Mech. Sci. 142, 224–234 (2018)

    Article  Google Scholar 

  27. Y. Tian, G. Li, Z. Yi, J. Liu, B. Yang, A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film. J. Phys. Chem. Solids 117, 21–27 (2018)

    Article  ADS  Google Scholar 

  28. S. Saxena, R.K. Dwivedi, V. Khare, Tuning of a wide range of low resonance frequencies by a novel multi-resonant piezoelectric energy harvester. Mater. Today Proc. 28, 85–87 (2020)

    Article  Google Scholar 

  29. J.W. Roberts, M.P. Cartmell, Forced vibration of a beam system with autoparametric coupling effects. Strain 20(3), 123–131 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Dwivedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A. Electromechanical energies analysis of main piezoelectric cantilever beam

If \(Y_{s}\) and \(Y_{p}\) are the \(young^{'}s\) modulus of substrate and piezoelectric materials, \(e_{31}\) and \(\varepsilon _{33}\) are piezoelectric and permittivity constants of piezoelectric material. Also, V(t) is the output voltage across piezoelectric material. Then, the stress developed on substrate (\(T_{s}\)) and piezoelectric layer \(Y_{p}\) and strain \((\varepsilon _{m})\) are expressed as below.

$$\begin{aligned}&T_{s}=Y_{s}\,\varepsilon _{m} \end{aligned}$$
(33)
$$\begin{aligned}&T_{p}=Y_{p}\,\varepsilon _{m}-\frac{e_{31}V(t)}{t_{p}} \end{aligned}$$
(34)
$$\begin{aligned}&\varepsilon _{m}=\frac{\partial D_{T}^{(m)}(x_{o},z,t)}{\partial x_{o}}\nonumber \\&\quad =\frac{\partial D^{(m)}(x_{o},t)}{\partial x_{o}}-z\frac{\partial ^{2}E^{(m)}(x_{o},t)}{\partial x_{o}^{2}} \end{aligned}$$
(35)

In addition, according to [3] the transverse and longitudinal displacement with respect to the moving base of the beam can be expressed as following absolute and uniform convergent series of the eigenfunctions.

$$\begin{aligned}&E^{(m)}(x_{o},t)=\sum _{i}^{N}\alpha _{i}^{(m)}(t)\,\theta _{i}^{(m)}(x_{o)} \end{aligned}$$
(36)
$$\begin{aligned}&D^{(m)}(x_{o},t)=\sum _{i}^{N}\beta _{i}^{(m)}(t)\,\eta _{i}^{(m)}(x_{o)} \end{aligned}$$
(37)

Here, \(\theta _{i}^{(m)}(x_{o)}\) and \(\eta _{i}^{(m)}(x_{o)}\) are the assumed mode shape functions. Also, \(\alpha _{i}^{(m)}(t)\) and \(\beta _{i}^{(m)}(t)\) are modal coordinates of the clamped-free main beam for the \(i_{th}\) mode. Hence, by substituting the expressions of stress, strain, longitudinal and transverse displacement of the main beam in the following standard expressions, the strain, kinetic and electrical energy of the main beam can be calculated.

$$\begin{aligned}&SE^{(m)}=\frac{1}{2}\int _{V_{s}}T_{s}\varepsilon _{m}dV_{s}\nonumber \\&\quad +\frac{1}{2}\int _{V_{p}}T_{p}\varepsilon _{m}dV_{p} \end{aligned}$$
(38)
$$\begin{aligned}&KE^{(m)}={} \frac{1}{2}\int _{V_{s}}\rho _{s\,}\nonumber \\&\quad [\,\left( \frac{\partial D_{T}^{(m)}(x_{o},z,t)}{\partial t}\right) ^{2}\nonumber \\&\qquad +\left( \frac{\partial E_{T}^{(m)}(x_{o},t)}{\partial t}\right) ^{2}]\,dV_{s} \nonumber \\&\qquad +\frac{1}{2}\int _{V_{p}}\rho _{p\,}[\,\left( \frac{\partial D_{T}^{(m)}(x_{o},z,t)}{\partial t}\right) ^{2}\nonumber \\&\qquad +\left( \frac{\partial E_{T}^{(m)}(x_{o},t)}{\partial t}\right) ^{2}]\,dV_{p} \end{aligned}$$
(39)
$$\begin{aligned}&EE=-\frac{1}{2}\int _{V_{p}}\left( e_{31}\varepsilon _{m}\frac{V(t)}{t_{p}}\right. \nonumber \\&\quad \left. -\varepsilon _{33}(\frac{V(t)}{t_{p}})^{2}\right) dV_{p} \end{aligned}$$
(40)

Here, mass(m), stiffness (k),damping (\(\zeta\))and force (f) matrices are defined as below:

$$\begin{aligned}&[U_{1}^{KE^{(m)}(1)}\,U_{2}^{KE^{(m)}(1)}\,U_{3}^{KE^{(m)}(1)}]\nonumber \\&\quad =[U_{1}^{KE^{(m)}(3)}\,U_{2}^{KE^{(m)}(3)}\,U_{3}^{KE^{(m)}(3)}]\nonumber \\&\quad =Y_{s}\,[U_{s1}\,U_{s2}\,U_{s3}] \end{aligned}$$
(41)
$$\begin{aligned}&[U_{1}^{KE^{(m)}(2)}\,U_{2}^{KE^{(m)}(2)}\,U_{3}^{KE^{(m)}(2)}]\nonumber \\&\quad =Y_{s}\,[U_{s1}\,U_{s2}\,U_{s3}]+Y_{p}\,[U_{p1}\,U_{p2}\,U_{p3}] \end{aligned}$$
(42)
$$\begin{aligned}&m_{ij}^{\alpha \alpha (m)}\nonumber \\&\quad =\sum _{r=1}^{3}\int _{r}\left( U_{3}^{KE^{(m)}(r)}\theta _{i}^{'\,(m)}\theta _{j}^{'\,(m)}\right. \nonumber \\&\qquad \left. +U_{1}^{KE^{(m)}(r)}\theta _{i}^{(m)}\theta _{j}^{(m)}\right) dx_{o} \end{aligned}$$
(43)
$$\begin{aligned}&m_{ij}^{\alpha \beta (m)}=\sum _{r=1}^{3}\int _{r}U_{2}^{KE^{(m)}(r)}\nonumber \\&\quad \theta _{i}^{'\,(m)}\eta _{j}^{(m)}dx_{o} \end{aligned}$$
(44)
$$\begin{aligned}&m_{ij}^{\beta \beta (m)}=\sum _{r=1}^{3}\int _{r}U_{1}^{KE^{(m)}(r)}\nonumber \\&\quad \eta _{i}^{(m)}\eta _{j}^{(m)}dx_{o} \end{aligned}$$
(45)
$$\begin{aligned}&f_{i}^{(m)}=\sum _{r=1}^{3}\int _{r}U_{1}^{KE^{(m)}(r)}\nonumber \\&\quad \theta _{i}^{(m)}\frac{\partial E_{b}^{(m)}(x_{o},t)}{\partial t}dx_{o} \end{aligned}$$
(46)
$$\begin{aligned}&[U_{s1}\,U_{s2}\,U_{s3}]=\int \int _{A_{s}}[1\,z\,z^{2}]\,dydz \end{aligned}$$
(47)
$$\begin{aligned}&{[}U_{p1}\,U_{p2}\,U_{p3}]=\int \int _{A_{p}}[1\,z\,z^{2}]\,dydz \end{aligned}$$
(48)
$$\begin{aligned}&{[}U_{1}^{SE^{(m)}(1)}\,U_{2}^{SE^{(m)}(1)}\,U_{3}^{SE^{(m)}(1)}]\nonumber \\&\quad =[U_{1}^{SE^{(m)}(3)}\,U_{2}^{SE^{(m)}(3)}\,U_{3}^{SE^{(m)}(3)}]\nonumber \\&\quad =Y_{s}\,[U_{s1}\,U_{s2}\,U_{s3}] \end{aligned}$$
(49)
$$\begin{aligned}&[U_{1}^{SE^{(m)}(2)}\,U_{2}^{SE^{(m)}(2)}\,U_{3}^{SE^{(m)}(2)}]\nonumber \\&\quad =Y_{s}\,[U_{s1}\,U_{s2}\,U_{s3}]+Y_{p}\,[U_{p1}\,U_{p2}\,U_{p3}] \end{aligned}$$
(50)
$$\begin{aligned}&[H_{p1}\,H_{p2}]=\int \int _{A_{p}}\frac{e_{31}}{t_{p}}\,[1\,z]\,dydz \end{aligned}$$
(51)
$$\begin{aligned}&k_{ij}^{\beta \beta (m)}=\sum _{r=1}^{3}\int _{r}U_{1}^{SE^{(m)}(r)}\nonumber \\&\quad \eta _{i}^{'\,(m)}\eta _{j}^{'\,(m)}dx_{o} \end{aligned}$$
(52)
$$\begin{aligned}&k_{ij}^{\alpha \beta (m)}=\sum _{r=1}^{3}\int _{r}U_{2}^{SE^{(m)}(r)}\nonumber \\&\quad \theta _{i}^{''\,(m)}\eta _{j}^{'\,(m)}dx_{o} \end{aligned}$$
(53)
$$\begin{aligned}&k_{ij}^{\alpha \alpha (m)}=\sum _{r=1}^{3}\int _{r}U_{3}^{SE^{(m)}(r)}\nonumber \\&\quad \theta _{i}^{''\,(m)}\theta _{j}^{''\,(m)}dx_{o} \end{aligned}$$
(54)
$$\begin{aligned}&\zeta _{i}^{\beta }=\int _{L_{p}}H_{p2}\theta _{j}^{''\,(m)}dx_{o} \end{aligned}$$
(55)
$$\begin{aligned}&\zeta _{i}^{\alpha }=\int _{L_{p}}H_{p1}\eta _{j}^{'\,(m)}dx_{o} \end{aligned}$$
(56)

B. Electromechanical energies analysis of straight beam

Therefore, by incorporating the effect of vibrating clamped end and proof mass in Eqn. (4-5), the expressions of the strain \((SE^{s})\) and Kinetic \((KE^{s})\) energy have been obtained. Next, the mass (m), stiffness (k) and force (f) matrices for the straight beam are illustrated below:

$$\begin{aligned}&{[}U_{1}^{SE^{(s)}}\,U_{2}^{SE^{(s)}}\,U_{3}^{SE^{(s)}}]\nonumber \\&\quad =Y_{s}\int \int _{A_{s}}[1\,z\,z^{2}]\,dydz \end{aligned}$$
(57)
$$\begin{aligned}&{[}U_{1}^{KE^{(s)}}\,U_{2}^{KE^{(s)}}\,U_{3}^{KE^{(s)}}]\nonumber \\&\quad =\rho _{s}\int \int _{A_{s}}[1\,z\,z^{2}]\,dydz \end{aligned}$$
(58)
$$\begin{aligned}&m_{ij}^{\alpha \alpha (s)}=\int _{0}^{l_{s}}\left( U_{3}^{KE^{(s)}}\theta _{i}^{'\,(s)}\theta _{j}^{'\,(s)}\right. \nonumber \\&\quad \left. +U_{1}^{KE^{(s)}}\theta _{i}^{(s)}\theta _{j}^{(s)}\right) dx_{s}+M_{2}\theta _{i}^{(s)}(l_{s})\nonumber \\&\quad \theta _{j}^{(s)}(l_{s})+I_{2}\theta _{i}^{'\,(s)}(l_{s})\,\theta _{j}^{'\,(s)}(l_{s}) \end{aligned}$$
(59)
$$\begin{aligned}&m_{ij}^{\alpha \beta (s)}=\int _{0}^{l_{s}}U_{2}^{KE^{(s)}}\theta _{i}^{'\,(s)}\eta _{j}^{(s)}dx_{s} \end{aligned}$$
(60)
$$\begin{aligned}&m_{ij}^{\beta \beta (s)}=\int _{0}^{l_{s}}U_{1}^{KE^{(s)}}\eta _{i}^{(s)}\eta _{j}^{(s)}dx_{s} \end{aligned}$$
(61)
$$\begin{aligned}&m_{ij}^{\alpha \alpha (sm)}=\int _{0}^{l_{s}}U_{1}^{KE^{(s)}}\theta _{i}^{(s)}\nonumber \\&\quad (\,\theta _{j}^{(m)}(L)+x_{s}\theta _{j}^{'\,(m)}(L))dx_{s}+M_{2}\theta _{i}^{(s)}(l_{s})(\theta _{j}^{(m)}(L)+l_{s}\theta _{j}^{'\,(m)}(L)) \end{aligned}$$
(62)
$$\begin{aligned}&m_{ij}^{\alpha \alpha (ms)}={} \int _{0}^{l_{s}}[U_{1}^{KE^{(s)}}(\theta _{i}^{(m)}(L)\nonumber \\&\qquad +x_{s}\theta _{i}^{'\,(m)}(L))\,(\theta _{j}^{(m)}(L)\nonumber \\&\qquad +x_{s}\theta _{j}^{'\,(m)}(L))]dx_{s}+M_{2}(\theta _{i}^{(m)}(L) \nonumber \\&\qquad +l_{s}\theta _{i}^{'\,(m)}(L))\,(\theta _{j}^{(m)}(L)+l_{s}\theta _{j}^{'\,(m)}(L)) \end{aligned}$$
(63)
$$\begin{aligned}&k_{ij}^{\alpha \alpha \,(s)}=\int _{0}^{l_{s}}U_{3}^{SE^{(s)}}\nonumber \\&\quad \theta _{i}^{''\,(s)}\theta _{j}^{''\,(s)}dx_{s} \end{aligned}$$
(64)
$$\begin{aligned}&k_{ij}^{\alpha \beta \,(s)}=\int _{0}^{l_{s}}U_{2}^{SE^{(s)}}\nonumber \\&\quad \theta _{i}^{''\,(s)}\eta _{j}^{'\,(s)}dx_{s} \end{aligned}$$
(65)
$$\begin{aligned}&k_{ij}^{\beta \beta \,(s)}=\int _{0}^{l_{s}}U_{1}^{SE^{(s)}}\nonumber \\&\quad \eta _{i}^{'\,(s)}\eta _{j}^{'\,(s)}dx_{s} \end{aligned}$$
(66)
$$\begin{aligned}&f_{i}^{(s)}=\int _{0}^{l_{s}}U_{1}^{KE^{(s)}}\nonumber \\&\quad \theta _{i}^{(s)}\frac{\partial E_{b}^{(m)}(x_{s}+L,\,t)}{\partial t}dx_{s}\nonumber \\&\qquad +M_{2}\theta _{i}^{(s)}(l_{s})\frac{\partial E_{b}^{(m)}(x_{s}+L,\,t)}{\partial t}|_{x_{s}=l_{s}} \end{aligned}$$
(67)
$$\begin{aligned}&f_{i}^{\sim (s)}={} \int _{0}^{l_{s}}U_{1}^{KE^{(s)}}(\theta _{i}^{(m)}(L)\nonumber \\&\quad +x_{s}\theta _{i}^{'\,(m)}(L))\frac{\partial E_{b}^{(m)}(x_{s}+L,\,t)}{\partial t}dx_{s}+M_{2}(\theta _{i}^{(m)}(L) \nonumber \\&\quad +l_{s}\theta _{i}^{'\,(m)}(L))\frac{\partial E_{b}^{(m)}(x_{s}+L,\,t)}{\partial t}|_{x_{s}=l_{s}} \end{aligned}$$
(68)

C. Electromechanical energies analysis of L-shaped beams

The transverse and axial displacement appeared in XY and YZ beam can be represented by convergent series of eigenfunctions [3] as shown below:

$$\begin{aligned}&E^{(k)}(x_{h},t)=\sum _{i}^{N}\alpha _{i}^{(k)}(t)\,\theta _{i}^{(k)}(x_{h}) \end{aligned}$$
(69)
$$\begin{aligned}&D^{(k)}(x_{h},t)=\sum _{i}^{N}\beta _{i}^{(k)}(t)\,\eta _{i}^{(k)}(x_{h}) \end{aligned}$$
(70)
$$\begin{aligned}&E^{(k)}(x_{v},t)=\sum _{i}^{N}\gamma _{i}^{(k)}(t)\,\phi _{i}^{(k)}(x_{v}) \end{aligned}$$
(71)

Here, \(\theta _{i}^{(k)}(x_{h)}\), \(\eta _{i}^{(k)}(x_{h)}\) and \(\phi _{i}^{(k)}(x_{v})\)are the assumed mode shape functions. Also, \(\alpha _{i}^{(m)}(t)\), \(\beta _{i}^{(m)}(t)\) and \(\gamma _{i}^{(k)}(t)\) are modal coordinates of the L-shaped beam for the \(i_{th}\) mode. Therefore, with the use of Eqn. (23-25) in Eqn. (4-5), the simplified expressions of strain and kinetic energies have been derived. Again, the mass (m), stiffness (k) and force (f) matrices for the L-shaped beams are expressed below:

$$\begin{aligned}&{[}U_{1}^{SE^{(k)}}\,U_{2}^{SE^{(k)}}\,U_{3}^{SE^{(k)}}]\nonumber \\&\quad =Y_{s}\int \int _{A_{s}}[1\,z\,z^{2}]\,dydz \end{aligned}$$
(72)
$$\begin{aligned}&{[}U_{1}^{KE^{(k)}}\,U_{2}^{KE^{(k)}}\,U_{3}^{KE^{(k)}}]\nonumber \\&\quad =\rho _{s}\int \int _{A_{s}}[1\,z\,z^{2}]\,dydz \end{aligned}$$
(73)
$$\begin{aligned}&m_{ij}^{\beta \beta (k)}=\int _{0}^{l_{k}}U_{1}^{KE^{(k)}}\eta _{i}^{(k)}\eta _{j}^{(k)}dx_{k} \end{aligned}$$
(74)
$$\begin{aligned}&m_{ij}^{\alpha \alpha (k)}=\int _{0}^{l_{k}}\left( U_{3}^{KE^{(k)}}\right. \nonumber \\&\quad \theta _{i}^{'\,(k)}\theta _{j}^{'\,(k)}\nonumber \\&\qquad +U_{1}^{KE^{(k)}}\theta _{i}^{(k)}\nonumber \\&\quad \left. \theta _{j}^{(k)}\right) dx_{k}+M_{k}\theta _{i}^{(k)}(l_{v})\nonumber \\&\quad \theta _{j}^{(k)}(l_{v})+I_{k}\theta _{i}^{'\,(k)}(l_{v})\,\theta _{j}^{'\,(k)}(l_{v}) \end{aligned}$$
(75)
$$\begin{aligned}&m_{ij}^{\alpha \beta (s)}=\int _{0}^{l_{k}}U_{2}^{KE^{(k)}}\nonumber \\&\quad \theta _{i}^{'\,(k)}\eta _{j}^{(k)}dx_{k} \end{aligned}$$
(76)
$$\begin{aligned}&m_{ij}^{\gamma \alpha (s)}=\int _{0}^{l_{k}}U_{2}^{KE^{(k)}}\nonumber \\&\quad \theta _{i}^{'\,(k)}\psi _{ij}^{(k)}dx_{k} \end{aligned}$$
(77)
$$\begin{aligned}&\psi _{ij}^{(k)}=\int _{0}^{l_{v}}\phi _{i}^{'\,(k)}\phi _{j}^{'\,(k)}dx_{v} \end{aligned}$$
(78)
$$\begin{aligned}&m_{ij}^{\gamma \beta (k)}=\int _{0}^{l_{k}}U_{1}^{KE^{(k)}}\eta _{i}^{(k)}\psi _{ij}^{(k)}dx_{k} \end{aligned}$$
(79)
$$\begin{aligned}&m_{ij}^{\gamma \gamma (k)}=\int _{0}^{l_{k}}U_{1}^{KE^{(k)}}\nonumber \\&\quad \phi _{i}^{(k)}\phi _{j}^{(k)}dx_{k}\nonumber \\&\quad +M_{k}\phi _{i}^{(k)}(l_{v})\,\phi _{j}^{(k)}(l_{v})\nonumber \\&\quad +I_{k}\phi _{i}^{'\,(k)}(l_{v})\,\phi _{j}^{'\,(k)}(l_{v}) \end{aligned}$$
(80)
$$\begin{aligned}&m_{ij}^{\alpha \gamma (k)}=\int _{0}^{l_{k}}U_{1}^{KE^{(k)}}\nonumber \\&\quad \theta _{i}^{(k)}\phi _{j}^{(k)}dx_{k}\nonumber \\&\qquad +M_{k}\theta _{i}^{(k)}(l_{v})\,\phi _{j}^{(k)}(l_{v})\nonumber \\&\qquad +I_{k}\theta _{i}^{'\,(k)}(l_{v})\,\phi _{j}^{'\,(k)}(l_{v}) \end{aligned}$$
(81)
$$\begin{aligned}&q_{i}^{(k)}=\int _{0}^{l_{k}}U_{1}^{KE^{(k)}}\phi _{i}^{(k)}\nonumber \\&\quad \frac{\partial E_{b}^{(m)}(x_{k}+L,\,t)}{\partial t}dx_{k}\nonumber \\&\qquad +M_{k}\phi _{i}^{(k)}(l_{v})\frac{\partial E_{b}^{(m)}(x_{k}+L,\,t)}{\partial t}|_{x_{k}=l_{v}} \end{aligned}$$
(82)
$$\begin{aligned}&m_{ij}^{\gamma \alpha \,(km)}=\int _{0}^{l_{k}}U_{1}^{KE^{(k)}}\nonumber \\&\quad \phi _{i}^{(k)}(\,\theta _{j}^{(m)}(L)\nonumber \\&\qquad +x_{k}\theta _{j}^{'\,(m)}(L))dx_{k}\nonumber \\&\qquad +M_{k}\phi _{i}^{(k)}(l_{v})(\theta _{j}^{(m)}(L)+l_{v}\theta _{j}^{'\,(m)}(L)) \end{aligned}$$
(83)
$$\begin{aligned}&m_{ij}^{\alpha \alpha \,(km)}=\int _{0}^{l_{k}}U_{1}^{KE^{(k)}}\nonumber \\&\quad \theta _{i}^{(k)}(\,\theta _{j}^{(m)}(L)\nonumber \\&\qquad +x_{k}\theta _{j}^{'\,(m)}(L))dx_{k}+M_{k}\theta _{i}^{(k)}(l_{v})(\theta _{j}^{(m)}(L)\nonumber \\&\qquad +l_{v}\theta _{j}^{'\,(m)}(L)) \end{aligned}$$
(84)
$$\begin{aligned}&m_{ij}^{\alpha \alpha \,(mm)}={} \int _{0}^{l_{k}}[U_{1}^{KE^{(k)}}(\theta _{i}^{(m)}(L)\nonumber \\&\quad +x_{k}\theta _{i}^{'\,(m)}(L))\,(\theta _{j}^{(m)}(L)\nonumber \\&\quad +x_{k}\theta _{j}^{'\,(m)}(L))]dx_{k}\nonumber \\&\quad +M_{k}(\theta _{i}^{(m)}(L)+l_{v}\theta _{i}^{'\,(m)}(L))\nonumber \\&\quad (\theta _{j}^{(m)}(L)+l_{v}\theta _{j}^{'\,(m)}(L)) \end{aligned}$$
(85)
$$\begin{aligned}&k_{ij}^{\beta \beta \,(k)}=\int _{0}^{l_{k}}U_{1}^{SE^{(k)}}\nonumber \\&\quad \eta _{i}^{'\,(k)}\eta _{j}^{'\,(k)}dx_{k} \end{aligned}$$
(86)
$$\begin{aligned}&k_{ij}^{\alpha \alpha \,(k)}=\int _{0}^{l_{k}}U_{3}^{SE^{(k)}}\nonumber \\&\quad \theta _{i}^{''\,(k)}\theta _{j}^{''\,(k)}dx_{k} \end{aligned}$$
(87)
$$\begin{aligned}&k_{ij}^{\alpha \beta \,(k)}=\int _{0}^{l_{k}}U_{2}^{SE^{(k)}}\nonumber \\&\quad \theta _{i}^{''\,(k)}\eta _{j}^{'\,(k)}dx_{k} \end{aligned}$$
(88)
$$\begin{aligned}&k_{ij}^{\gamma \beta \,(k)}=\int _{0}^{l_{k}}U_{1}^{SE^{(k)}}\nonumber \\&\quad \eta _{i}^{'\,(k)}\gamma _{i}^{'\,(k)}\gamma _{j}^{'\,(k)}dx_{k\gamma } \end{aligned}$$
(89)
$$\begin{aligned}&k_{ij}^{\gamma \alpha \,(k)}=\int _{0}^{l_{k}}U_{2}^{SE^{(k)}}\nonumber \\&\quad \theta _{i}^{''\,(k)}\phi _{i}^{'\,(k)}\phi _{j}^{'\,(k)}dx_{k} \end{aligned}$$
(90)
$$\begin{aligned}&k_{ij}^{\gamma \gamma \,(k)}=\int _{0}^{l_{k}}U_{1}^{SE^{(k)}}\nonumber \\&\quad \phi _{i}^{'\,(k)}\phi _{j}^{'\,(k)}\phi _{q}^{'\,(k)}\phi _{r}^{'\,(k)}dx_{k} \end{aligned}$$
(91)
$$\begin{aligned}&f_{i}^{(k)}=\int _{0}^{l_{s}}U_{1}^{KE^{(k)}}\theta _{i}^{(k)}\nonumber \\&\quad \frac{\partial E_{b}^{(m)}(x_{k}+L,\,t)}{\partial t}dx_{k}+M_{k}\theta _{i}^{(k)}(l_{v})\nonumber \\&\quad \frac{\partial E_{b}^{(m)}(x_{s}+L,\,t)}{\partial t}|_{x_{k}=l_{v}} \end{aligned}$$
(92)
$$\begin{aligned}&f_{i}^{\sim (k)}={} \int _{0}^{l_{k}}U_{1}^{KE^{(k)}}(\theta _{i}^{(m)}(L)\nonumber \\&\quad +x_{k}\theta _{i}^{'\,(m)}(L))\frac{\partial E_{b}^{(m)}(x_{k}+L,\,t)}{\partial t}dx_{k}+M_{k}(\theta _{i}^{(m)}(L) \nonumber \\&\quad +l_{v}\theta _{i}^{'\,(m)}(L))\frac{\partial E_{b}^{(m)}(x_{k}+L,\,t)}{\partial t}|_{x_{s}=l_{v}} \end{aligned}$$
(93)
$$\begin{aligned}&P=\left( \frac{dD^{(k)}(x_{v},t)}{dt}\right) ^{2}\nonumber \\&\quad =\frac{1}{4}\sum _{i}^{N}\sum _{j}^{N}\sum _{q}^{N}\nonumber \\&\quad \sum _{t}^{N}(\gamma _{i}\,\gamma _{j}^{'}\nonumber \\&\qquad +\gamma _{i}^{'}\,\gamma _{j})(\gamma _{q}\,\gamma _{t}^{'}\nonumber \\&\qquad +\gamma _{q}^{'}\,\gamma _{t})\chi _{ij}\chi _{qt} \end{aligned}$$
(94)
$$\begin{aligned}&\chi _{ij}=\int _{0}^{x_{v}}\phi _{i}^{'\,(k)}(x_{v})\phi _{j}^{'\,(k)}(x_{v})dx_{v} \end{aligned}$$
(95)
$$\begin{aligned}&\frac{dD^{(k)}(x_{v},t)}{dt}=\frac{1}{2}\sum _{i}^{N}\nonumber \\&\quad \sum _{j}^{N}(\gamma _{i}\,\gamma _{j}^{'}+\gamma _{i}^{'}\,\gamma _{j})\chi _{ij} \end{aligned}$$
(96)

D. Electromechanical equation : Displacement (\(\alpha\)), force (F) and coupling (\(\zeta\)) vectors, also mass (M) and stiffness (K) matrices

$$\begin{aligned}&\alpha =\left[ \alpha _{j}^{(m)}\,\beta _{j}^{(m)}\,\gamma _{j}^{(m)}\right. \nonumber \\&\quad \alpha _{j}^{(s)}\,\beta _{j}^{(s)}\,\gamma _{j}^{(s)}\nonumber \\&\quad \left. \alpha _{j}^{(k)}\,\beta _{j}^{(k)}\,\gamma _{j}^{(k)}\right] ^{T} \end{aligned}$$
(97)
$$\begin{aligned}&F=\begin{bmatrix}-\frac{\partial }{\partial t}f_{r}^{(m)}-\frac{\partial }{\partial t}(f_{r}^{(s)}+f_{r}^{\sim (s)})-2\,\frac{\partial }{\partial t}(f_{r}^{(k)}+f_{r}^{\sim (s)})\\ 0\\ 2\,\frac{\partial }{\partial t}q_{r}^{(k)} \end{bmatrix} \end{aligned}$$
(98)
$$\begin{aligned}&\zeta =\left[ -\zeta _{r}^{\alpha }\,\zeta _{r\,}^{\beta }0\,0\,0\,0\,0\,0\,0\right] \end{aligned}$$
(99)

Also, the mass and stiffness matrices can illustrate as below:

$$\begin{aligned}&M=\begin{bmatrix}m_{rj} &{} -m_{rj}^{\alpha \beta (m)} &{} 0 &{} m_{rj}^{\alpha \alpha (s)} &{} -m_{rj}^{\alpha \beta (s)} &{} 0 &{} 2\,m_{rj}^{\alpha \alpha (k)} &{} -m_{rj}^{\alpha \beta (k)} &{} 2\,m_{rj}^{\alpha \gamma (k)}\\ -m_{rj}^{\alpha \beta (m)} &{} m_{rj}^{\beta \beta (m)} &{} 0 &{} -m_{rj}^{\alpha \beta (s)} &{} m_{rj}^{\beta \beta (s)} &{} 0 &{} -m_{rj}^{\alpha \beta (k)} &{} m_{rj}^{\beta \beta (k)} &{} 0\\ 2\,m_{rj}^{\gamma \alpha (km)} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 2\,m_{rj}^{\gamma \gamma (k)} \end{bmatrix} \end{aligned}$$
(100)

Where,

$$\begin{aligned}&m_{rj}=m_{rj}^{\alpha \alpha (m)}+2\,m_{rj}^{(sm)}\nonumber \\&\quad +m_{rj}^{(ms)}+2\,m_{rj}^{\alpha \alpha (km)}+2\,m_{rj}^{\alpha \alpha (m)} \end{aligned}$$
(101)
$$\begin{aligned}&K=\begin{bmatrix}k_{rj}^{\alpha \alpha (m)} &{} -k_{rj}^{\alpha \beta (m)} &{} 0 &{} k_{rj}^{\alpha \alpha (s)} &{} -k_{rj}^{\alpha \beta (s)} &{} 0 &{} 2\,k_{rj}^{\alpha \alpha (k)} &{} 2\,k_{rj}^{\alpha \beta (k)} &{} 0\\ -k_{rj}^{\alpha \beta (m)} &{} k_{rj}^{\beta \beta (m)} &{} 0 &{} -k_{rj}^{\alpha \beta (s)} &{} k_{rj}^{\beta \beta (s)} &{} 0 &{} -2\,k_{rj}^{\alpha \beta (k)} &{} 2\,k_{rj}^{\beta \beta (k)} &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -2\,k_{rj}^{\gamma \alpha (k)} \end{bmatrix} \end{aligned}$$
(102)

E. Solution of electromechanical equations

$$\begin{aligned}&\alpha =\left[ \alpha _{1}\,\alpha _{2}.....\alpha _{N}\right] ^{T} \end{aligned}$$
(103)
$$\begin{aligned}&\beta =\left[ \beta _{1}\,\beta _{2}.....\beta _{N}\right] ^{T} \end{aligned}$$
(104)
$$\begin{aligned}&\zeta ^{\sim \,\alpha }=\left[ \zeta _{1}^{\alpha }\,\zeta _{2}^{\alpha }.......\zeta _{N}^{\alpha }\right] ^{T} \end{aligned}$$
(105)
$$\begin{aligned}&\zeta ^{\sim \,\beta }=\left[ \zeta _{1}^{\beta }\,\zeta _{2}^{\beta }.......\zeta _{N}^{\beta }\right] ^{T} \end{aligned}$$
(106)
$$\begin{aligned}&\varDelta ^{\alpha \alpha }={} -\omega ^{2}\left( m^{\alpha \alpha (m)}+2m^{(sm)}+m^{(ms)}\right. \nonumber \\&\qquad +2m^{\alpha \alpha (km)}+2m^{\alpha \alpha (m)}+m^{\alpha \alpha (s)}\nonumber \\&\quad \left. +2m^{\alpha \alpha (m)}\right) \nonumber \\&\qquad +\left( k^{\alpha \alpha (m)}+k^{\alpha \alpha (s)}\right. \nonumber \\&\qquad \left. +2k^{\alpha \alpha (k)}\right) +j\omega \left[ j\omega C_{p}+\frac{1}{R_{l}}\right] ^{-1}\zeta ^{\alpha }\left( \zeta ^{\sim \alpha }\right) ^{T} \end{aligned}$$
(107)
$$\begin{aligned}&\varDelta ^{\alpha \beta }=-\omega ^{2}\left( m^{\alpha \beta (m)}+m^{\alpha \beta (s)}+m^{\alpha \beta (k)}\right) \nonumber \\&\quad +\left( k^{\alpha \beta (m)}+k^{\alpha \beta (s)}+2k^{\alpha \beta (k)}\right) \nonumber \\&\quad +j\omega \left[ j\omega C_{p}+\frac{1}{R_{l}}\right] ^{-1}\zeta ^{\alpha }\left( \zeta ^{\sim \beta }\right) ^{T} \end{aligned}$$
(108)
$$\begin{aligned}&\varDelta ^{\alpha \gamma }=2\omega ^{2}m^{\alpha \gamma (k)} \end{aligned}$$
(109)
$$\begin{aligned}&\varDelta ^{\beta \alpha }=-\omega ^{2}\left( m^{\alpha \beta (m)}+m^{\alpha \beta (s)}+m^{\alpha \beta (k)}\right) \nonumber \\&\quad +\left( k^{\alpha \beta (m)}+k^{\alpha \beta (s)}\right. \nonumber \\&\quad \left. +2k^{\alpha \beta (k)}\right) +j\omega \left[ j\omega C_{p}+\frac{1}{R_{l}}\right] ^{-1}\zeta ^{\beta }\nonumber \\&\quad \left( \zeta ^{\sim \alpha }\right) ^{T} \end{aligned}$$
(110)
$$\begin{aligned}&\varDelta ^{\beta \beta }=-\omega ^{2}\left( m^{\beta \beta (m)}+m^{\beta \beta (s)}\right. \nonumber \\&\quad \left. +m^{\beta \beta (k)}\right) +\left( k^{\beta \beta (m)}\right. \nonumber \\&\quad \left. +k^{\beta \beta (s)}+2k^{\beta \beta (k)}\right) \nonumber \\&\quad +j\omega \left[ j\omega C_{p}+\frac{1}{R_{l}}\right] ^{-1}\zeta ^{\beta }\left( \zeta ^{\sim \beta }\right) ^{T} \end{aligned}$$
(111)
$$\begin{aligned}&\varDelta ^{\gamma \alpha }=2\omega ^{2}m^{\gamma \alpha (km)} \end{aligned}$$
(112)
$$\begin{aligned}&\varDelta ^{\gamma \gamma }=2\left[ \omega ^{2}m^{\gamma \gamma (k)}+k^{\gamma \alpha (k)}\right] \end{aligned}$$
(113)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, S., Dwivedi, R.K. & Khare, V. Effects of cavity in a multi-resonant piezoelectric energy harvester with one straight and two L-shaped branches. Appl. Phys. A 127, 798 (2021). https://doi.org/10.1007/s00339-021-04928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04928-5

Keywords

Navigation