Skip to main content
Log in

Stacking fault energy of basal plane for hexagonal closed-packed medium entropy alloy ZrHfTi: Ab initio prediction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ternary alloy ZrHfTi is a novel hexagonal close-packed medium entropy material. As a fundamental parameter for understanding the deformation behavior and mechanical property especially ductility, the stacking fault energy (SFE) of basal plane for ZrHfTi alloy has been studied. Unlike the case of CrCoNi-based alloys, the derived SFEs for intrinsic and twin-like stacking faults of alloy ZrHfTi are relatively high. From the evolution features of stacking fault energies from unitary to binary and ternary materials, the SFEs of studied alloys are intermediate between component materials due to merely mixing effect. Because the SFEs of the constituent elements are relatively large, the SFEs of multicomponent alloys are not necessarily small. The SFE of ZrHfTi is obviously affected by alloying of constituent elements with strong structural propensity. Based on the generalized stacking fault energy, mechanical properties and deformation characteristics are further studied. Our results demonstrate that ZrHfTi has good ductility and high yield strength, and deformation twin in ZrHfTi is also very possible based on the twinning criteria. The research of this paper is beneficial for the design and development of more valuable high-performance multicomponent alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6(5), 299–303 (2004)

    Article  Google Scholar 

  2. B. Cantor, Entropy 16(9), 4749–4768 (2014)

    Article  ADS  Google Scholar 

  3. D. Xie, R. Feng, P.K. Liaw, H. Bei, Y. Gao, Intermetallics 121, 106775 (2020)

    Article  Google Scholar 

  4. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19(6), 349–362 (2016)

    Article  Google Scholar 

  5. Z. Wang, Q.H. Fang, J. Li, B. Liu, Y. Liu, J. Mater. Sci. Technol. 34(2), 349–354 (2018)

    Article  Google Scholar 

  6. B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7, 10602 (2016)

    Article  ADS  Google Scholar 

  7. Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Nat. Commun. 8, 14390 (2017)

    Article  ADS  Google Scholar 

  8. J.P. Liu, J.X. Chen, T.W. Liu, C. Li, Y. Chen, L.H. Dai, Scr. Mater. 181, 19–24 (2020)

    Article  Google Scholar 

  9. D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448–511 (2017)

    Article  ADS  Google Scholar 

  10. S. Wang, D. Wu, H. She, M. Wu, D. Shu, A. Dong, H. Lai, B. Sun, Mater. Sci. Eng. C 113, 110959 (2020)

    Article  Google Scholar 

  11. L. Rogal, F. Czerwinski, P.T. Jochym, L. Litynska-Dobrzynska, Mater. Des. 92, 8–17 (2016)

    Article  Google Scholar 

  12. J.H. Dai, W. Li, Y. Song, L. Vitos, Mater. Des. 182, 108033 (2019)

    Article  Google Scholar 

  13. L. Rogal, P. Bobrowski, F. Koermann, S. Divinski, F. Stein, B. Grabowski, Sci. Rep. 7, 2209 (2017)

    Article  ADS  Google Scholar 

  14. S. Kibey, J.B. Liu, M.J. Curtis, D.D. Johnson, H. Sehitoglu, Acta Mater. 54(11), 2991–3001 (2006)

    Article  ADS  Google Scholar 

  15. G. Lu, N. Kioussis, V.V. Bulatov, E. Kaxiras, Phys. Rev. B 62(5), 3099–3108 (2000)

    Article  ADS  Google Scholar 

  16. X. Sun, H. Zhang, W. Li, X. Ding, Y. Wang, L. Vitos, Nanomaterials 10(1), 59 (2020)

    Article  Google Scholar 

  17. C. Wang, H. Wang, T. Huang, X. Xue, F. Qiu, Q. Jiang, Sci. Rep. 5, 10213 (2015)

    Article  ADS  Google Scholar 

  18. H. Van Swygenhoven, P.M. Derlet, A.G. Froseth, Nat. Mater. 3(6), 399–403 (2004)

    Article  ADS  Google Scholar 

  19. Y. Wu, D.Q. Zhou, W.L. Song, H. Wang, Z.Y. Zhang, D. Ma, X.L. Wang, Z.P. Lu, Phys. Rev. Lett. 109(24), 245506 (2012)

    Article  ADS  Google Scholar 

  20. A. Zunger, S.H. Wei, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65(3), 353–356 (1990)

    Article  ADS  Google Scholar 

  21. B.L. Gyorffy, Phys. Rev. B Condens. Matter Mater. Phys. 5(6), 2382–2384 (1972)

    Article  ADS  Google Scholar 

  22. L.Y. Tian, G.S. Wang, J.S. Harris, D.L. Irving, J.J. Zhao, L. Vitos, Mater. Des. 114, 243–252 (2017)

    Article  Google Scholar 

  23. A. van de Walle, CALPHAD Comput. Coupling Phase Diagrams Thermochem. 33(2), 266–278 (2009)

    Article  Google Scholar 

  24. G.G. Kresse, J.J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  25. P. Blochl, Rev. B Condens. Matter Mater. Phys. 50(24), 17953–17979 (1994)

    Article  ADS  Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78(7), 1396–1396 (1997)

    Article  ADS  Google Scholar 

  27. T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, K.D. Pham, O.V. Parasyuk, N.M. Denysyuk, O.Y. Khyzhun, Mater. Chem. Phys. 261, 124216 (2021)

    Article  Google Scholar 

  28. D. James, H. Pack, J. Monkhorst, Phys. Rev. B 16, 148–1749 (1977)

    Google Scholar 

  29. M.Z. Hasan, K.M. Hossain, S.K. Mitro, M. Rasheduzzaman, J.K. Modak, M.A. Rayhan, Appl. Phys. A Mater. Sci. Process. 127(1), 36 (2021)

    Article  ADS  Google Scholar 

  30. S.J. Zhao, G.M. Stocks, Y.W. Zhang, Acta Mater. 134, 334–345 (2017)

    Article  ADS  Google Scholar 

  31. S. Qiu, X.-C. Zhang, J. Zhou, S. Cao, H. Yu, Q.-M. Hu, Z. Sun, J. Alloy. Compd. 846, 156321 (2020)

    Article  Google Scholar 

  32. T. Huang, H. Jiang, Y. Lu, T. Wang, T. Li, Appl. Phys. A: Mater. Sci. Process. 125(3), 180 (2019)

    Article  ADS  Google Scholar 

  33. B.T. Wang, W.D. Li, P. Zhang, J. Nucl. Mater. 420(1–3), 501–507 (2012)

    Article  ADS  Google Scholar 

  34. C. Niu, A.J. Zaddach, C.C. Koch, D.L. Irving, J. Alloys Compd. 672, 510–520 (2016)

    Article  Google Scholar 

  35. F. Cleri, S. Yip, D. Wolf, S.R. Phillpot, Phys. Rev. Lett. 79(7), 1309–1312 (1997)

    Article  ADS  Google Scholar 

  36. K. Kumar, R. Sankarasubramanian, U.V. Waghmare, Comput. Mater. Sci. 150, 424–431 (2018)

    Article  Google Scholar 

  37. J. Wu, L. Wen, B.-Y. Tang, L.M. Peng, W.J. Ding, Solid State Sci. 13(1), 120–125 (2011)

    Article  ADS  Google Scholar 

  38. H. Huang, X. Li, Z. Dong, W. Li, S. Huang, D. Meng, X. Lai, T. Liu, S. Zhu, L. Vitos, Acta Mater. 149, 388–396 (2018)

    Article  ADS  Google Scholar 

  39. P.J.H. Denteneer, W.V. Haeringen, J. Phys. C Solid State Phys. 20(32), L883 (2000)

    Article  Google Scholar 

  40. S. Huang, H. Huang, W. Li, D. Kim, S. Lu, X. Li, E. Holmstrom, S.K. Kwon, L. Vitos, Nat. Commun. 9, 2381 (2018)

    Article  ADS  Google Scholar 

  41. C. Varvenne, O. Mackain, E. Clouet, Acta Mater. 78, 65–77 (2014)

    Article  ADS  Google Scholar 

  42. X. Wu, R. Wang, S. Wang, Appl. Surf. Sci. 256(11), 3409–3412 (2010)

    Article  ADS  Google Scholar 

  43. L.Z. Vegard, Ztschrift Für Physik 5(1), 17–26 (1921)

    Article  ADS  Google Scholar 

  44. P. Chui, Trans. Mater. Heat Treat. 39(12), 37–41 (2018)

    Google Scholar 

  45. S.J. Zhou, A.E. Carlsson, R. Thomson, Phys. Rev. Lett. 72(6), 852–855 (1994)

    Article  ADS  Google Scholar 

  46. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloy. Compd. 509(20), 6043–6048 (2011)

    Article  Google Scholar 

  47. P. Carrez, D. Ferre, P. Cordier, Nature 446(7131), 68–70 (2007)

    Article  ADS  Google Scholar 

  48. D. Wei, X. Li, J. Jiang, W. Heng, Y. Koizumi, W.M. Choi, B.J. Lee, H.S. Kim, H. Kato, A. Chiba, Scr. Mater. 165, 39–43 (2019)

    Article  Google Scholar 

  49. J. Han, X.M. Su, Z.H. Jin, Y.T. Zhu, Scr. Mater. 64(8), 693–696 (2011)

    Article  Google Scholar 

  50. E.B. Tadmor, S. Hai, J. Mech. Phys. Solids 51(5), 765–793 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  51. X. An, H. Zhang, S. Ni, X. Ou, X. Liao, M. Song, J. Mater. Sci. Technol. 41, 76–80 (2020)

    Article  Google Scholar 

  52. E.B. Tadmor, N. Bernstein, J. Mech. Phys. Solids 52(11), 2507–2519 (2004)

    Article  ADS  Google Scholar 

  53. R. Mayahi, J. Alloy. Compd. 818, 152925 (2020)

    Article  Google Scholar 

  54. F. Ducastelle, F. Cryot-Lackmann, J. Phys. Chem. Solids 32(1), 285–301 (1970)

    Article  Google Scholar 

  55. V.E. Panin, V.P. Fadin, Russ. Phys. J. 12(9), 1191–1197 (1972)

    Google Scholar 

Download references

Acknowledgements

We sincerely thank the financial support of National Natural Sciences Foundation of China under Grant No. 51461002, Key Project of Guangxi Scientific Foundation under Grant No. 2018GXNSFDA281010, and the high-performance computing platform of Guangxi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Yu Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XT., Shao, L., Ding, N. et al. Stacking fault energy of basal plane for hexagonal closed-packed medium entropy alloy ZrHfTi: Ab initio prediction. Appl. Phys. A 127, 670 (2021). https://doi.org/10.1007/s00339-021-04835-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04835-9

Keywords

Navigation