Skip to main content
Log in

Ferroelastic and ferroelectric phase transition in bulk Pb1-xLax(Zr0.53Ti0.47)O3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ceramic samples of lead zirconate titanate doped with lanthanum at the morphotropic phase boundary (PLZT 1.0/53/47) exhibit ferroelastic phase transition in the range from 135 to 150 °C. The study used structural analysis (XRD and Raman spectroscopy) and variation of dielectric and piezoelectric characteristics with temperature to analyze the ferroelastic and ferroelectric phase transition in PLZT. Measurements of X-ray diffraction patterns with temperature in the range from room temperature to 500 °C made it possible to monitor the evolution of the crystalline phases present in the sample, with a mixture of rhombohedral and tetragonal phases and initial concentrations of approximately 40 and 60%, respectively, as well as the evolution of the cell parameters and crystallite size. All techniques applied in this study showed the presence of phase changes in the temperature range from 135 to 150 °C, which is attributed to a displacive proper ferroelastic phase transition. This transition is associated with a decrease in the concentration of the rhombohedral phase and an increase in that of the tetragonal phase. Additionally, a transition at 350 °C is observed, which corresponds to the ferroelectric-paraelectric phase transition, coinciding with the results reported by Morgan Electro Ceramics for Type II Marine ceramics (PZT-5A).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials, 1st edn. (Oxford University Press Inc., New York, 1977)

    Google Scholar 

  2. A.D.E. Lakeman, D.A. Payne, J. Am. Ceram. Soc. 75, 3091 (1992)

    Article  Google Scholar 

  3. H.J. Kim, S.H. Oh, H.M. Jang, Appl. Phys. Lett. 75, 3195 (1999)

    Article  ADS  Google Scholar 

  4. Ragini, S.K. Mishra, D. Pandey, H. Lemmens, G. Van Tendeloo, Phys. Rev. B, 64, 054101 (2001).

  5. S.K. Mishra, A.P. Singh, D. Pandey, Appl. Phys. Lett. 69, 1707 (1996)

    Article  ADS  Google Scholar 

  6. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.E. Park, Appl. Phys. Lett. 74, 2059 (1999)

    Article  ADS  Google Scholar 

  7. R. Guo, L.E. Cross, S.E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84, 5423 (2000)

    Article  ADS  Google Scholar 

  8. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, 1st edn. (Academic Press, London, UK, 1971)

    Google Scholar 

  9. P. Ari-Gur, L. Benguigui, J. Phys. D 8, 1856 (1975)

    Article  ADS  Google Scholar 

  10. W. Cao, L.E. Cross, Phys. Rev. B 47, 4825 (1993)

    Article  ADS  Google Scholar 

  11. V.A. Isupov, Solid State Commun. 17, 1331 (1975)

    Article  ADS  Google Scholar 

  12. J.D. Freire, R.S. Katiyar, Phys. Rev. B 37, 2074 (1988)

    Article  ADS  Google Scholar 

  13. Z. Ujma, J. Handerek, H. Hassan, G.E. Kungel, M.J. Pawelczyk, J. Phys. Condens. Matter 7, 895 (1995)

    Article  ADS  Google Scholar 

  14. M.E. Marssi, R. Farhi, D. Viehland, J. Appl. Phys. 81, 355 (1997)

    Article  ADS  Google Scholar 

  15. G.H. Haertling, C.E. Land, J. Am. Ceram. Soc. 54, 1 (1971)

    Article  Google Scholar 

  16. G.H. Haertling, J. Am. Ceram. Soc. 54, 303 (1971)

    Article  Google Scholar 

  17. E.T. Keve, K.L. Bye, J. Appl. Phys. 46, 810 (1975)

    Article  ADS  Google Scholar 

  18. R. Shannigrahi, S. Tripathy, Ceram. Int. 33, 595 (2007)

    Article  Google Scholar 

  19. J.F. Scott, Rev. Mod. Phys. 46, 83 (1974)

    Article  ADS  Google Scholar 

  20. G. Burns, B.A. Scott, Phys. Rev. B 7, 3088 (1973)

    Article  ADS  Google Scholar 

  21. P.S. Dobal, R.S. Katiyar, J. Raman Spectrosc. 33, 405 (2002)

    Article  ADS  Google Scholar 

  22. A.G. Souza Filho, K.C.V. Lima, A.P. Ayala, I. Guedes, P.T.C. Freire, F.E.A. Melo, J. Mendes Filho, E.B. Araujo, J.A. Eiras, Phys. Rev. B. 66, 132107 (2002)

  23. E.B. Araujo, K. Yukimitu, J.C.S. Moraes, L.H.Z. Pelaio, J.A. Eiras, J. Phys. Condens. Matter 15, 4851 (2003)

    Article  ADS  Google Scholar 

  24. A.G. Souza Filho, K.C.V. Lima, A.P. Ayala, I. Guedes, P.T.C. Freire, J. Mendes Filho, E.B. Araujo, J.A. Eiras, Phys. Rev. B. 61, 14283 (2000)

  25. W. Cochran, Adv. Phys. 9, 387 (1960)

    Article  ADS  Google Scholar 

  26. S.K. Mishra, D. Pandey, Philos. Mag. B 76, 227 (1997)

    Article  ADS  Google Scholar 

  27. L. D. Landau, E.M. Lifshitz, Course of Theoretical Physics Vol. 9 Statistical Physics, Part 2 (Pergamon Press, Oxford, England, 1980)

  28. K. Aizu, Phys. Rev. B 2, 754 (1970)

    Article  ADS  Google Scholar 

  29. V. Janovec, V. Dvorak, J. Petzelt, Czech. J. Phys. B25, 1362 (1975)

    Article  ADS  Google Scholar 

  30. P. Toledano, J.C. Toledano, Phys. Rev. B 14, 3097 (1976)

    Article  ADS  Google Scholar 

  31. P. Toledano, J.C. Toledano, Phys. Rev. BI6 386, (1977)

  32. P. Tolédano, D. Machon, Physical Review B 71, 024210 (2005)

  33. J.C. Toledano, P. Toledano, Phys. Rev. B 21, 1139 (1980)

    Article  ADS  Google Scholar 

  34. V.K. Wadhawan, Bull. Mater. Sci. 6, 733 (1984)

    Article  Google Scholar 

  35. M. Maud Ferrari, L. Lutterotti, J Appl Phys, 76, 7246 (1994).

  36. D. A. Berlincourt, D.R. Curran, H. Jaffe, in Physical Acoustics, Principles and Methodos, ed. by W.P. Mason (Academic Press, New York, 1964) p. 169–270

  37. "IRE Standards on Piezoelectric Crystals: Measurements of Piezoelectric Ceramics, 1961," in Proceedings of the IRE, vol. 49, no. 7, pp. 1161–1169, July 1961. https://doi.org/10.1109/JRPROC.1961.287860.

  38. IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176, 195–198 (1988)

    Google Scholar 

  39. Y.H. Huang, C.Y. Yen, T.R. Huang, Appl. Sci. 10, 5072 (2020)

    Article  Google Scholar 

  40. P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 89, 8085 (2001)

    Article  ADS  Google Scholar 

  41. P. Colomban, A. Slodczyk, Opt. Mater. 31, 1759 (2009)

    Article  ADS  Google Scholar 

  42. Boston Piezo Optic INC. Ceramic Materials. www.bostonpiezooptics.comceramic-materials-pzt

Download references

Acknowledgements

The authors acknowledge the financial support of projects PNCB 10/09, CONACYT-CB-2014-240460, Prodep 2018-Cinvestav-CA-17, the Sabbatical Program CONACYT, Mexico and FONDOCYT Project 2016/2017-004 “Obtaining Ferropiezoelectric Ceramics with Perovskite Structure for Medical and Industrial Applications,” Dominican Republic. M. Durruthy thanks LIDTRA for their support and facilities. We also gratefully recognize the grants LN2019-299082 and LN2020-314848.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María D. Durruthy-Rodríguez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durruthy-Rodríguez, M.D., Portellez-Rodríguez, J., Bentancourt, J.F. et al. Ferroelastic and ferroelectric phase transition in bulk Pb1-xLax(Zr0.53Ti0.47)O3. Appl. Phys. A 127, 728 (2021). https://doi.org/10.1007/s00339-021-04829-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04829-7

Keywords

PAC

Navigation