Skip to main content
Log in

Microwave-assisted chemical bath deposition of PbSe thermoelectric thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By using microwave-assisted chemical deposition (MA-CBD) technique, lead selenide (PbSe) thin films were successfully synthetized at 80 °C and different growth times (3, 4, and 5 min). The films were analyzed by means of X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and UV-Vis spectroscopy. Also, their electrical properties, such as conductivity, Seebeck coefficient, carrier concentration, and carrier mobility, are presented. Homogeneous films with thickness in the range 120–165 nm and gran size of 22.9–24.5 nm were obtained. The dislocation density and micro-strains were found to vary inversely proportional to the crystallite size. Three and five-element thermocouples were tested with thermoelectric potential of up to 1.59 mV K−1. The values of energy band gap of 0.75–0.64 eV, electrical conductivity of 9–28Ω−1 cm−1 and Seebeck coefficient of 213–232 μV K−1 suggest that MA-CBD is an effective synthesis technique to produce PbSe thin films for photovoltaic and thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K.W. Li, X.T. Meng, X. Liang, H. Wang, H. Yan, J. Solid State Electrochem. 10, 48 (2006)

    Article  Google Scholar 

  2. N.V. Golubchenko, V.A. Moshnikov, D.B. Chesnokova, Glass Phys. Chem. 32, 337 (2006)

    Article  Google Scholar 

  3. V.V. Tomaev, M.F. Panov, Glass Phys. Chem. 32, 370 (2006)

    Article  Google Scholar 

  4. V. Sholin, A.J. Breeze, I.E. Anderson, Y. Sahoo, D. Reddy, S.A. Carter, Sol. Energy Mater. Sol. Cells 92, 1706 (2008)

    Article  Google Scholar 

  5. D.V. Talapin, C.B. Murray, Science 310, 86 (2005)

    Article  ADS  Google Scholar 

  6. J.P. Rojas, D. Singh, S.B. Inayat, G.A. Torres Sevilla, H.M. Fahad, M.M. Hussain, J. Solid State Sci. Technol. 6(3), 3036 (2017)

    Article  Google Scholar 

  7. T.S. Bhat, A.V. Shinde, R.S. Devan, A.M. Teli, Y.R. Ma, J.H. Kim, P.S. Patil, Appl. Phys. A 124, 34 (2018)

    Article  ADS  Google Scholar 

  8. S. Anwar, B.K. Mishra, Mater. Sci. Semicond. Process. 40, 910 (2015)

    Article  Google Scholar 

  9. S. Anwar, M. Pattanaik, B.K. Mishra, S. Anwar, Mater. Sci. Semicond. Process. 34, 45 (2015)

    Article  Google Scholar 

  10. P.K. Nair, A.K. Martínez, A.R. García-Angelmo, E. Barrios-Salgado, M.T.S. Nair, Semicond. Sci. Technol. 33, 35004 (2018)

    Article  Google Scholar 

  11. H. Yang, L. Chen, J. Zheng, K. Qiao, X. Li, Appl. Phys. A 122, 710 (2016)

    Article  ADS  Google Scholar 

  12. V. Arivazhagan, M.M. Parvathi, S. Rajesh, Vacuum 86, 1092 (2012)

    Article  ADS  Google Scholar 

  13. W. Feng, H. Zhou, F. Chen, Vacuum 114, 82 (2015)

    Article  ADS  Google Scholar 

  14. H. Saloniemi, T. Kanniainen, M. Ritala, M. Leskelä, R. Lappalainen, J. Mater. Chem. 8, 651 (1998)

    Article  Google Scholar 

  15. R. Vaidyanathan, J.L. Stickney, U. Happek, Electrochim. Acta 49, 1321 (2004)

    Article  Google Scholar 

  16. W. Feng, X. Wang, H. Zhou, F. Chen, Vacuum 109, 1008 (2014)

    Google Scholar 

  17. B. Wagner, N.B. Singh, S. McLaughlin, A. Berghmans, D. Kahler, D. Knuteson, J. Cryst. Growth 311, 1080 (2009)

    Article  ADS  Google Scholar 

  18. R.T. Rumianowski, R.S. Dygdala, W. Jung, WaclawBala. J. Cryst. Growth 252, 230 (2003)

    Article  ADS  Google Scholar 

  19. D.M. Rowe, Handbook of Thermoelectrics (CRC Press, Florida, 1995), p. 43

    Google Scholar 

  20. A. Bhardwaj, E. Varadarajan, P. Srivastava, H.K. Sehgal, Solid State Commun. 146, 53 (2008)

    Article  ADS  Google Scholar 

  21. S.D. Delekar, M.K. Patil, B.V. Jadhav, K.R. Sanadi, P.P. Hanakare, Sol. Energy 84, 394 (2010)

    Article  ADS  Google Scholar 

  22. M.G. Iniestra-Galindo, J. Pérez-González, H.M. Balmori-Ramírez, A.L. Flores-Esperilla, Rev. Mex. Ing. Quím. 17, 445 (2018)

    Article  Google Scholar 

  23. A.S. Garzón-Pérez, S.P. Paredes-Carrera, H. Martínez-Gutiérrez, N. Cayetano-Castro, J.C. Sánchez-Ochoa, R.M. Pérez-Gutiérrez, Rev. Mex. Ing. Quím. 19, 363 (2020)

    Article  Google Scholar 

  24. M. Xin, K. Li, H. Wang, Appl. Surf. Sci. 256, 1436 (2009)

    Article  ADS  Google Scholar 

  25. W. Tu, H. Liu, J. Mater. Chem. 10, 2207 (2000)

    Article  Google Scholar 

  26. M.A. Sliem, A. Chemseddine, U. Bloeck, R.A. Fischer, CrystEngComm 13, 483 (2011)

    Article  Google Scholar 

  27. E.B. Hostetler, K. Kim, R.P. Oleksak, R.C. Fitzmorris, D.A. Peterson, P. Chandran, C. Chang, B.K. Paul, D.M. Schut, G.S. Herman, Mater. Lett. 128, 54 (2014)

    Article  Google Scholar 

  28. J. Zhu, O. Palchik, S. Chen, A. Gedanken, J. Phys. Chem. B 104, 7344 (2000)

    Article  Google Scholar 

  29. M. Husham, Z. Hassan, M.A. Mahdi, A.M. Selman, Ahmed. Superlattice Microst. 67, 8 (2014)

    Article  ADS  Google Scholar 

  30. M. Chen, J. Sung, C. Ou, S. Som, C. Lu, Thin Solid Films 645, 64 (2018)

    Article  ADS  Google Scholar 

  31. P.K. Nair, E. Barrios-Salgado, J. Capistrán, M.L. Ramón, M.T.S. Nair, R.A. Zingaro, J. Electrochem. Soc. 157, D528 (2010)

    Article  Google Scholar 

  32. E. Barrios-Salgado, Y. Rodriguez-Lazcano, J.P. Pérez-Orozco, J. Colin, P. Altuzar, J. Campos, D. Quesada, Adv. Condens. Matter Phys. 2019, 5960587 (2019)

    Article  Google Scholar 

  33. E. Yücel, N. Güler, Y.J. Yücel, J. Alloys Compd. 589, 207 (2014)

    Article  Google Scholar 

  34. M.M. Abbas, A.A. Shehab, N.A. Hassan, A.K. Al-Samurae, Thin Solid Films 519, 4917 (2011)

    Article  ADS  Google Scholar 

  35. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1979), p. 112

    Google Scholar 

  36. E. Lifshim, X-Ray Characterization of Materials (Wiley, New York, 1999), p. 28

    Book  Google Scholar 

  37. E. Barrios Salgado, D.E. Lara Llandera, M.T.S. Nair, P.K. Nair, Semicond. Sci. Technol. 35, 45006 (2020)

    Google Scholar 

  38. D.K. Schroder, Semiconductor Materials and Device Characterization (Wiley, New York, 1990), p. 596

    Google Scholar 

  39. E. Barrios-Salgado, M.T.S. Nair, P.K. Nair, R.A. Zingaro, Thin Solid Films 519, 7432 (2011)

    Article  ADS  Google Scholar 

  40. S. Gorer, A. Albu-Yaron, G. Hodes, J. Phys. Chem. 99, 16442 (1995)

    Article  Google Scholar 

  41. S.M. Sze, Physics of Semiconductors Devices (Wiley, New York, 1981), p. 19

    Google Scholar 

  42. R.A. Smith, Semiconductors (Cambridge University Press, Cambridge, 1978), p. 153

    Google Scholar 

  43. K. Bindu, J. Campos, M.T.S. Nair, A. Sanchez, P.K. Nair, Semicond. Sci. Technol. 20, 496 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the IER-UNAM through CONACYT-LIFYCS and Universidad Autónoma de Nayarit for the use of their installations and infrastructure.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Rodríguez-Lazcano.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Lazcano, Y., Barrios-Salgado, E., Pérez-Orozco, J.P. et al. Microwave-assisted chemical bath deposition of PbSe thermoelectric thin films. Appl. Phys. A 127, 537 (2021). https://doi.org/10.1007/s00339-021-04682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04682-8

Keywords

Navigation