Skip to main content
Log in

Correlation among magneto-, electrical- and thermal-transport properties in SrRuO3 films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The magneto-, electrical- and thermal-transport properties of SrRuO3 (SRO) films have been investigated. The magnetization (M), relative resistivity (Δρ) and relative Seebeck (ΔS) near TC follow a scaling law, M ~ (TCT)α, ΔρSP ~ (TT)2β and ΔS ~ (TCT)2γ, respectively. The values α = 0.394, β = 0.401 and γ = 0.421 for the (001)-SRO thin films are well fitted with mean-field critical exponents. While critical exponent α = 0.365, β = 0.357 and γ = 0.363 for the (111)-SRO thin films belong to Heisenberg ferromagnetic behavior. A T2 temperature dependence of resistivity below 30 K corresponds to a Fermi-liquid state. In the Fermi-liquid regime, the MR(%) =|ρ(H)−ρ(0)|/ρ(0) × 100% and MS(%) =|S(H)−S(0)|/S(0) × 100% are quadratic at low field and almost linear for large field without saturation until 70 kOe. Furthermore, dM/dT, dρ/dT and dS/dT show a linear relationship, indicating the intrinsic electrical-, thermal- and magneto-transport properties are coupled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. H. Boschker, T. Harada, T. Asaba, R. Ashoori, A.V. Boris, H. Hilgenkamp, C.R. Hughes, M.E. Holtz, L. Li, D.A. Muller, H. Nair, P. Reith, X. Renshaw Wang, D.G. Schlom, A. Soukiassian, J. Mannhart, Phys. Rev. X 9, 011027 (2019)

    Google Scholar 

  2. L. Si, O. Janson, G. Li, Z.C. Zhong, Z.L. Liao, G. Koster, K. Held, Phys. Rev. Lett. 119, 026402 (2017)

    Article  ADS  Google Scholar 

  3. S.R. Lee, M.S. Anwar, Y.J. Shin, M.-C. Lee, Y. Sugimoto, M. Kunieda, S. Yonezawa, Y. Maeno, T.W. Noh, Phys. Status Solidi B. 257, 2000047 (2020)

    Article  ADS  Google Scholar 

  4. L.M. Wang, H.E. Horng, H.C. Yang, Phys. Rev. B. 70, 014433 (2004)

    Article  ADS  Google Scholar 

  5. S. Tyagi, V.G. Sathel, G. Sharma, D.M. Phase, V.R. Reddy, J. Phys. Condens. Matter. 32, 305501 (2020)

    Article  Google Scholar 

  6. D. Kan, Y. Shimakawa, Appl. Phys. Lett. 115, 022403 (2019)

    Article  ADS  Google Scholar 

  7. P.B. Allen, H. Berger, O. Chauvet, L. Forro, T. Jarlborg, A. Junod, B. Revaz, G. Santi, Phys. Rev. B. 53, 4393 (1996)

    Article  ADS  Google Scholar 

  8. G. Koster, L. Klein, W. Siemons, G. Rijnders, J.S. Dodge, C.B. Eom, D.H.A. Blank, M.R. Beasley, Rev. Mod. Phys. 84, 253 (2012)

    Article  ADS  Google Scholar 

  9. L. Klein, J.S. Dodge, C.H. Ahn, J.W. Reiner, L. Mieville, T.H. Geballe, M.R. Beasley, A. Kapitulnik, J. Phys.: Condens. Mater. 8, 10111 (1996)

    ADS  Google Scholar 

  10. L. Klein, J.S. Dodge, C.H. Ahn, J.G.J. Snyder, T.H. Geballe, M.R. Beasley, A. Kapitulnik, Phys. Rev. Lett. 96, 2774 (1996)

    Article  ADS  Google Scholar 

  11. D. Kim, B.L. Zink, F. Hellman, S. McCall, G. Cao, J.E. Crow, Phys. Rev. B. 67, 100406 (2003)

    Article  ADS  Google Scholar 

  12. X.K. Ning, Z.J. Wang, Z.D. Zhang, J. Appl. Phys. 117, 093907 (2015)

    Article  ADS  Google Scholar 

  13. P. Rhodes, E.P. Wohlfarth, Proc. Roy. Soc. A 273, 247 (1963)

    ADS  Google Scholar 

  14. Y. Klein, S. Hébert, A. Maignan, S. Kolesnik, T. Maxwell, B. Dabrowski, Phys. Rev. B 73, 052412 (2006)

    Article  ADS  Google Scholar 

  15. A. Kanbayasi, J. Phys. Soc. Jap. 41, 1876 (1976)

    Article  ADS  Google Scholar 

  16. X.W. Wang, Y.Q. Zhang, H. Meng, Z.J. Wang, D. Li, Z.D. Zhang, J. Appl. Phys. 109, 07D707 (2011)

    Article  Google Scholar 

  17. S. Ryee, M.J. Han, Sci. Rep. 7, 4635 (2017)

    Article  ADS  Google Scholar 

  18. G.M. Leitus, S. Reich, F. Frolow, J. Magn. Magn. Mater. 206, 27 (1999)

    Article  ADS  Google Scholar 

  19. A.J. Grutter, F.J. Wong, E. Arenholz, A. Vailionis, Y. Suzuki, Phys. Rev. B 85, 134429 (2012)

    Article  ADS  Google Scholar 

  20. M. Gao, H. Du, C.R. Ma, M. Liu, G. Collings, Y.M. Zhang, C. Dai, C.L. Chen, Y. Lin, Appl. Phys. Lett. 103, 141901 (2013)

    Article  ADS  Google Scholar 

  21. H.J. Liu, V.T. Tra, Y.J. Chen, R. Huang, C.G. Duang, Y.H. Hsieh, H.J. Lin, J.Y. Lin, C.T. Chen, Y. Ikuhara, Y.H. Chu, Adv. Mater. 25, 4753 (2013)

    Article  Google Scholar 

  22. L.F. Mattheiss, Phys. Rev. B. 6, 4718 (1972)

    Article  ADS  Google Scholar 

  23. M.S. Laad, E. Müller-Hartmann, Phys. Rev. Lett. 87, 246402 (2001)

    Article  ADS  Google Scholar 

  24. M.S. Laad, I. Bradaric, F.V. Kusmartsev, Phys. Rev. Lett. 100, 096402 (2008)

    Article  ADS  Google Scholar 

  25. Y.J. Chang, C.H. Kim, S.-H. Phark, Y.S. Kim, J. Yu, T.W. Noh, Phys. Rev. Lett. 103, 057201 (2009)

    Article  ADS  Google Scholar 

  26. I. Mannari, Prog. Theor. Phys. 22, 335 (1959)

    Article  ADS  Google Scholar 

  27. G. Koster, L. Klein, W. Siemons, G. Rijnders, J.S. Dodge, C.B. Eom, D.H.A. Blank, M.R. Beasley, Rev. Mod. Phys. 84, 253 (2012)

    Article  ADS  Google Scholar 

  28. J. Mravlje, A. Georges, Phys. Rev. Lett. 117, 036401 (2016)

    Article  ADS  Google Scholar 

  29. M.R. Peterson, B.S. Shastry, Phys. Rev. B 82, 195105 (2010)

    Article  ADS  Google Scholar 

  30. T.W. Silk, I. Terasaki, T. Fujii, A.J. Schofield, Phys. Rev. B 79, 134527 (2009)

    Article  ADS  Google Scholar 

  31. J. Mravlje, M. Aichhorn, T. Miyake, K. Haule, G. Kotliar, A. Georges, Phys. Rev. Lett. 106, 096401 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11604073, 11704095, 52002107), the Nature Science Foundation of Hebei Province (Grant No. A2017201104, E2017201227, No. A2020201010), the Science Foundation of Guizhou Provincial Education Department grant number QJHKYZ[2017]087;the Science Foundation of Guizhou Science and Technology Department grant number QKHJZ[2021]033

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. K. Ning or S. F. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G.Q., Chen, L., Ning, X.K. et al. Correlation among magneto-, electrical- and thermal-transport properties in SrRuO3 films. Appl. Phys. A 127, 409 (2021). https://doi.org/10.1007/s00339-021-04575-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04575-w

Navigation