Skip to main content
Log in

A differential model for the hysteresis in magnetic shape memory alloys and its application of feedback linearization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetic shape memory alloys (MSMAs) are materials with strong nonlinearity, which will show hysteresis when it works. In the current paper, a differential model is proposed to describe the hysteresis in MSMAs caused by magnetic field induced martensite reorientation based on Landau theory of phase transitions. First, the three-dimensional model is simplified into a one-dimensional case, and the hysteresis in MSMAs is described by three martensite variant orientations. Then, a traditional Landau free energy is introduced, and the traditional Landau model is obtained by using the Euler–Lagrange equation. However, it is found that the prediction accuracy of the model is not ideal compared with the experimental data. Thus, an improved model is proposed, and the traditional Landau free energy is replaced by a function that can be determined by the easily measured physical quantities in the experimental curve. Numerical experiments show that the prediction effect of the improved model is much better than the traditional Landau model, and the stress dependence is also demonstrated. Moreover, the proposed improved model has the advantages for dynamic analysis and control with its differential form. Therefore, the frequency dependence of the improved model is demonstrated and a feedback linearization control methodology is proposed to make the system develops in the desired trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Ullakko et al., Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69(13), 1966–1968 (1996)

    Article  ADS  Google Scholar 

  2. D.C. Lagoudas, Shape Memory Alloys: Modelling and Engineering Applications (Springer-Verlag, New York, NY, 2008).

    MATH  Google Scholar 

  3. S.J. Murray et al., 6% Magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl. Phys. Lett. 77(6), 886–888 (2000)

    Article  ADS  Google Scholar 

  4. L. Hirsinger, N. Creton, C. Lexcellent, Stress-induced phase transformations in Ni–Mn–Ga alloys: experiments and modelling. Mater. Sci. Eng. A Struct. Mater.: Prop. Microstruct. Process. 378(1), 365–369 (2004)

    Article  Google Scholar 

  5. P. Müllner, V.A. Chernenko, G. Kostorz, Large cyclic magnetic-field-induced deformation in orthorhombic (14M) Ni–Mn–Ga martensite. J. Appl. Phys. 95(3), 1531–1536 (2004)

    Article  ADS  Google Scholar 

  6. I. Karaman et al., Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Appl. Phys. Lett. 90(17), 172505 (2007)

    Article  ADS  Google Scholar 

  7. H.E. Karaca et al., Stress-induced martensite to austenite phase transformation in Ni2MnGa magnetic shape memory alloys. Smart Mater. Struct. 21(4), 45011 (2012)

    Article  Google Scholar 

  8. M.A.A. Farsangi et al., Energy harvesting from structural vibrations of magnetic shape memory alloys. Appl. Phys. Lett. 110(10), 103905 (2017)

    Article  ADS  Google Scholar 

  9. L. Straka, O. Heczko, S. Hannula, Temperature dependence of reversible field-induced strain in Ni–Mn–Ga single crystal. Scr. Mater. 54(8), 1497–1500 (2006)

    Article  Google Scholar 

  10. B. Kiefer et al., Characterization and modeling of the magnetic field-induced strain and work output in Ni2MnGa magnetic shape memory alloys. J. Magn. Magn. Mater. 312(1), 164–175 (2007)

    Article  ADS  Google Scholar 

  11. B. Kiefer, D.C. Lagoudas, Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philos. Mag. 85(33–35), 4289–4329 (2005)

    Article  ADS  Google Scholar 

  12. H. Shi et al., Numerical modeling of magnetomechanical characteristics of Ni–Mn–Ga magnetic shape memory alloy. IEEE Trans. Magn. 55(11), 1–9 (2019)

    Article  Google Scholar 

  13. N.M. Bruno et al., A theoretical and experimental investigation of power harvesting using the NiMnGa martensite reorientation mechanism. Smart Mater. Struct. 21(9), 94018 (2012)

    Article  Google Scholar 

  14. H.E. Karaca et al., Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater. 54(1), 233–245 (2006)

    Article  ADS  Google Scholar 

  15. M.A.A. Farsangi, H. Zohoor, Acoustic energy harvesting via magnetic shape memory alloys. J. Phys. D Appl. Phys. 52(13), 135501 (2019)

    Article  ADS  Google Scholar 

  16. L. Wang, R. Melnik, F. Lv, Stress induced polarization switching and coupled hysteretic dynamics in ferroelectric materials. Front. Mech. Eng. 6(3), 287–291 (2011)

    Article  Google Scholar 

  17. H. Du et al., Investigation on energy dissipation by polarization switching in ferroelectric materials and the feasibility of its application in sound wave absorption. Appl. Phys. A Mater. Sci. Process. 126(2), 1–15 (2020)

    Article  Google Scholar 

  18. A. Agneni, F. Mastroddi, G.M. Polli, Shunted piezoelectric patches in elastic and aeroelastic vibrations. Comput. Struct. 81(2), 91–105 (2003)

    Article  Google Scholar 

  19. J. Wang, P. Steinmann, A variational approach towards the modeling of magnetic field-induced strains in magnetic shape memory alloys. J. Mech. Phys. Solids 60(6), 1179–1200 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. H. Sayyaadi, M.A.A. Farsangi, Frequency-dependent energy harvesting via magnetic shape memory alloys. Smart Mater. Struct. 24(11), 115022 (2015)

    Article  ADS  Google Scholar 

  21. R. Xu, M. Zhou, Elman neural network-based identification of Krasnosel’Skii-Pokrovskii model for magnetic shape memory alloys actuator. IEEE Trans. Magn. 53(11), 1–4 (2017)

    Google Scholar 

  22. Y. Yu, C. Zhang, M. Zhou, NARMAX model-based hysteresis modeling of magnetic shape memory alloy actuators. IEEE Trans. Nanotechnol. 19, 1–4 (2020)

    Article  ADS  Google Scholar 

  23. F. Falk, Landau theory and martensitic phase transitions. Le Journal de Physique Colloques 43(C4), C4–C3 (1982)

    Article  Google Scholar 

  24. D. Wang, L. Wang, R. Melnik, A differential algebraic approach for the modeling of polycrystalline ferromagnetic hysteresis with minor loops and frequency dependence. J. Magn. Magn. Mater. 410, 144–149 (2016)

    Article  ADS  Google Scholar 

  25. L.X. Wang et al., Extension of the Landau theory for hysteretic electric dynamics in ferroelectric ceramics. J. Electroceram. 24(1), 51–57 (2010)

    Article  Google Scholar 

  26. M.S. Richman, P. Rulis, A.N. Caruso, Ferroelectric system dynamics simulated by a second-order Landau model. J. Appl. Phys. 122(9), 94101 (2017)

    Article  Google Scholar 

  27. H.S. Park et al., Behavior of magnetic domains during structural transformations in Ni2MnGa ferromagnetic shape memory alloy. Appl. Phys. Lett. 83(18), 3752–3754 (2003)

    Article  ADS  Google Scholar 

  28. A. Berti, C. Giorgi, E. Vuk, Hysteresis and temperature-induced transitions in ferromagnetic materials. Appl. Math. Model. 39(2), 820–837 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. A.N. Vasil’ev et al., Shape memory ferromagnets. Phys. Uspekhi 46(6), 559–588 (2003)

    Article  ADS  Google Scholar 

  30. X. He et al., Modelling ageing phenomenon in ferroelectrics via a Landau-type phenomenological model. Smart Mater. Struct. 30(1), 015017 (2020)

    Article  ADS  Google Scholar 

  31. F. Falk, Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metall. 28(12), 1773–1780 (1980)

    Article  Google Scholar 

  32. L. Wang, M. Willatzen, Modeling of nonlinear responses for reciprocal transducers involving polarization switching. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(1), 177–189 (2007)

    Article  Google Scholar 

  33. L.X. Wang, M. Willatzen, Nonlinear dynamical model for hysteresis based on nonconvex potential energy. J. Eng. Mech. 133(5), 506–513 (2007)

    Google Scholar 

  34. J. Wang, P. Steinmann, Finite element simulation of the magneto-mechanical response of a magnetic shape memory alloy sample. Philos. Mag. 93(20), 2630–2653 (2013)

    Article  ADS  Google Scholar 

  35. N. Sarawate, M. Dapino, Frequency dependent strain-field hysteresis model for ferromagnetic shape memory Ni-Mn-Ga. IEEE Trans. Magn. 44(5), 566–575 (2008)

    Article  ADS  Google Scholar 

  36. R.N. Couch J. Sirohi, I. Chopra. Testing and Modeling of NiMnGa Ferromagnetic Shape Memory Alloy for Static and Dynamic Loading Conditions, vol. 6173. SPIE (2006). https://doi.org/10.1117/12.659665.

  37. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature (London) 442(7104), 759–765 (2006)

    Article  ADS  Google Scholar 

  38. X. He et al., Modelling of creep hysteresis in ferroelectrics. Philos. Mag. (Abingdon, England) 98(14), 1256–1271 (2018)

    Article  ADS  Google Scholar 

  39. L. Wang, R.V.N. Melnik, Control of coupled hysteretic dynamics of ferroelectric materials with a Landau-type differential model and feedback linearization. Smart Mater. Struct. 18(7), 074011 (2009)

    Article  ADS  Google Scholar 

  40. W.M. Haddad, V. Chellaboina, Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach (Princeton University Press, Princeton, 2011).

    Book  MATH  Google Scholar 

  41. J.-J.E. Slotine, W. Li, Applied Nonlinear Control, No. 1, vol. 199 (Prentice hall, Englewood Cliffs, NJ, 1991).

    MATH  Google Scholar 

  42. V. Hassani, T. Tjahjowidodo, T.N. Do, A survey on hysteresis modeling, identification and control. Mech. Syst. Signal Process. 49(1–2), 209–233 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51575478 and 61571007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linxiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Han, Y., Wang, L. et al. A differential model for the hysteresis in magnetic shape memory alloys and its application of feedback linearization. Appl. Phys. A 127, 432 (2021). https://doi.org/10.1007/s00339-021-04533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04533-6

Keywords

Navigation