Skip to main content
Log in

Structural correlation of GeTeSeGa system by XRD and far-infrared spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural properties of quaternary Ge10Te80Se10-xGax (x = 0 to 10) glassy alloy have been studied with XRD (X-ray diffraction) and FTIR (Fourier transform infrared) spectroscopy. The position of FSDP (first sharp diffraction peak) (2θ) and its FWHM (full width half maxima) have been utilized to estimate the local structure parameters of FSDP like repeating distance y and structural correlation length (L). The far-infrared (IR) transmission spectra of Ge10Te80Se10-xGax (x = 0, 2, 4, 6, 8, 10) have been analysed in the range 30–300 cm−1 to study the formation of bonds using chain crossing model, random covalent network model and chemical bond approach. The theoretical calculations have been executed for bond energies, force constants, wave number, etc., for probable bonds, and the results justify the experimental values. The present study contributes to the understanding of the composition-dependent structural property relationship of chalcogenide glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Yang, B. Bureau, T. Rouxel, Y. Gueguen, O. Gulbiten, C. Roiland, E. Soignard, J.L. Yarger, J. Troles, J.C. Sangleboeuf, P. Lucas, Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x system. Phys Rev B - Condens Matter Mater Phys. 82, 1–8 (2010). https://doi.org/10.1103/PhysRevB.82.195206

    Article  Google Scholar 

  2. X.H. Zhang, Y. Guimond, Y. Bellec, Production of complex chalcogenide glass optics by molding for thermal imaging. J. Non. Cryst. Solids. 326–327, 519–523 (2003). https://doi.org/10.1016/S0022-3093(03)00464-2

    Article  Google Scholar 

  3. S.A. Fayek, M.R. Balboul, K.H. Marzouk, Optical, electrical and thermal studies on (As2Se3)3–x(As2Te3)xglasses. Thin Solid Films 515, 7281–7285 (2007). https://doi.org/10.1016/j.tsf.2007.03.039

    Article  ADS  Google Scholar 

  4. V. Sharma, S. Sharda, N. Sharma, S.C. Katyal, P. Sharma, Chemical ordering and electronic properties of lone pair chalcogenide semiconductors. Prog. Solid State Chem. 54, 31–44 (2019). https://doi.org/10.1016/j.progsolidstchem.2019.04.001

    Article  Google Scholar 

  5. P. Sharma, N. Sharma, S. Sharda, S.C. Katyal, V. Sharma, Recent developments on the optical properties of thin films of chalcogenide glasses. Prog. Solid State Chem. 44, 131–141 (2016). https://doi.org/10.1016/j.progsolidstchem.2016.11.002

    Article  Google Scholar 

  6. B.A.A. Wilhelm, C. Boussard-plédel, Q. Coulombier, J. Lucas, B. Bureau, P. Lucas (2007) Development of far-infrared-transmitting te based glasses suitable for carbon dioxide detection and space optics. 3796–3800. https://doi.org/https://doi.org/10.1002/adma.200700823.

  7. S. Danto, P. Houizot, C. Boussard-Pledel, X.H. Zhang, F. Smektala, J. Lucas, A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications. Adv. Funct. Mater. 16, 1847–1852 (2006). https://doi.org/10.1002/adfm.200500645

    Article  Google Scholar 

  8. P. Houizot, C. Boussard-Plédel, A.J. Faber, L.K. Cheng, B. Bureau, P.A. Van Nijnatten, W.L.M. Gielesen, J. Pereira do Carmo, J. Lucas, Infrared single mode chalcogenide glass fiber for space. Opt. Express. 15, 12529 (2007). https://doi.org/10.1364/oe.15.012529

    Article  ADS  Google Scholar 

  9. M.A. Popescu, Non-Crystalline Chalcogenides (Kluwer academic Publishers New York, Boston, Dordrecht, London, Moscow, 2001).

    Google Scholar 

  10. S. Maurugeon, B. Bureau, C. Boussard-plédel, A.J. Faber, X.H. Zhang, W. Geliesen, J. Lucas, Te-rich Ge – Te – Se glass for the CO2 infrared detection at 15µm. J. Non. Cryst. Solids. 355, 2074–2078 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.01.059

    Article  ADS  Google Scholar 

  11. Z. Yang, A.A. Wilhelm, P. Lucas, High-conductivity tellurium-based infrared transmitting glasses and their suitability for bio-optical detection. J. Am. Ceram. Soc. 93, 1941–1944 (2010). https://doi.org/10.1111/j.1551-2916.2010.03686.x

    Article  Google Scholar 

  12. K. Ramesh, S. Asokan, K.S. Sangunni, E.S.R. Gopal, Glass formation in germanium telluride glasses containing metallic additives. J. Phys. Chem. Solids. 61, 95–101 (2000). https://doi.org/10.1016/S0022-3697(99)00239-5

    Article  ADS  Google Scholar 

  13. K. N’Dri, D. Houphouet-Boigny, J.C. Jumas, Study of first sharp diffraction peak in As2S3 glasses by X-ray powder diffraction method. J. Non-Oxide Glas. 3, 29–37 (2012)

    Google Scholar 

  14. S.R. Elliott, Origin of the first sharp diffraction peak in the structure factor of covalent glasses. Phys. Rev. Lett. 67, 711–714 (1991). https://doi.org/10.1103/PhysRevLett.67.711

    Article  ADS  Google Scholar 

  15. C. Lin, G. Qu, Z. Li, S. Dai, H. Ma, T. Xu, Q. Nie, X. Zhang, Correlation between crystallization behavior and network structure in GeS2-Ga2S3-CsI chalcogenide glasses. J. Am. Ceram. Soc. 96, 1779–1782 (2013). https://doi.org/10.1111/jace.12394

    Article  Google Scholar 

  16. L. Calvez, M. Rozé, Y. Ledemi, H.L. Ma, J. Lucas, M. Allix, G. Matzen, X.H. Zhang, Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications. J. Ceram. Soc. Japan. 116, 1079–1082 (2008). https://doi.org/10.2109/jcersj2.116.1079

    Article  Google Scholar 

  17. E. Sharma, H.H. Hegazy, V. Sharma, P. Sharma, Topological behavior and glassy framework of GeTeSeGa chalcogenide glasses. Phys. B Condens. Matter. 562, 100–106 (2019). https://doi.org/10.1016/j.physb.2019.03.019

    Article  ADS  Google Scholar 

  18. E. Sharma, P.B. Barman, P. Sharma (2020) Evaluation of optical linear and non-linear parameters of thermally deposited GeTeSeGa thin films in NIR (1 µm–2.6 µm) wavelength range from their transmission spectra. Optik. 219; 165181. https://doi.org/https://doi.org/10.1016/j.ijleo.2020.165181.

  19. J. Bicerano, S.R. Ovshinsky, Chemical bond approach to the structures of chalcogenide glasses with reversible switching properties. J. Non. Cryst. Solids. 74, 75–84 (1985). https://doi.org/10.1016/0022-3093(85)90402-8

    Article  ADS  Google Scholar 

  20. T.S. Kavetskyy, O.I. Shpotyuk, V.T. Boyko, Void-species nanostructure of chalcogenide glasses studied with FSDP-related XRD. J. Phys. Chem. Solids. 68, 712–715 (2007). https://doi.org/10.1016/j.jpcs.2007.02.009

    Article  ADS  Google Scholar 

  21. P.H. Gaskell, Medium-range structure in glasses and low-Q structure in neutron and X-ray scattering data. J. Non. Cryst. Solids. 351, 1003–1013 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.01.011

    Article  ADS  Google Scholar 

  22. O.P. Rachek, X-ray diffraction study of amorphous alloys Al-Ni-Ce-Sc with using Ehrenfest’s formula. J. Non. Cryst. Solids. 352, 3781–3786 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.05.031

    Article  ADS  Google Scholar 

  23. L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals (Cornell University Press, London, 1960).

    Google Scholar 

  24. E. Sharma, R. Sharma, V. Sharma, P. Sharma, Cohesive energy calculation of quaternary Ge-Te-Se-Ga chalcogenide glasses using chemical bond approach. AIP Conf. Proc. 2050, 10–13 (2018). https://doi.org/10.1063/1.5083595

    Article  Google Scholar 

  25. I. Quiroga, C. Corredor, F. Bellido, J. Vkzquez, P. Villares, R.J. Garay (1996) Infrared studies of a Ge0.20Sb0.05Se0.75 glassy semiconductor. J. Non-Crytstalline Solids. 196; 183–186. https://doi.org/https://doi.org/10.1016/0022-3093(95)00583-8.

  26. L. Tichý, H. Tichá, A. Pačesová, J. Petzlt, On the infrared spectra of GeBiSe(S) glasses. J. Non. Cryst. Solids. 128, 191–196 (1991). https://doi.org/10.1016/0022-3093(91)90513-6

    Article  ADS  Google Scholar 

  27. W. Gordy, A relation between bond force constants, bond orders, bond lengths, and the electronegativities of the bonded atoms. J. Chem. Phys. 14, 305–320 (1946). https://doi.org/10.1063/1.1724138

    Article  ADS  Google Scholar 

  28. G.R. Somayajulu (1958) Dependence of force constant on electronegativity, bond strength, and bond order. VII, J. Chem. Phys. 28; 814–821. https://doi.org/https://doi.org/10.1063/1.1744276.

  29. A. Rana, B.P. Singh, R. Sharma, Structural and chemical changes in Ga doped Ge-S glassy alloy. J. Non. Cryst. Solids. 523, 119597 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119597

    Article  Google Scholar 

  30. G. Lucovsky, F.L. Galeener, R.C. Keezer, R.H. Geils, H.A. Six, Structural interpretation of the infrared and Raman spectra of glasses in the alloy system Ge1-xSx. Phys. Rev. B. 10, 5134–5146 (1974). https://doi.org/10.1103/PhysRevB.10.5134

    Article  ADS  Google Scholar 

  31. P. Tronc, M. Bensoussan, A. Brenac, C. Sebenne, Optical-absorption edge and raman scattering in GexSe1-x glasses. Phys. Rev. B. 8, 5947–5956 (1973). https://doi.org/10.1103/PhysRevB.8.5947

    Article  ADS  Google Scholar 

  32. G.J. Ball, J.M. Chamberlain, Infrared structural studies of GeySe1-y glasses. J. Non. Cryst. Solids. 29, 239–248 (1978). https://doi.org/10.1016/0022-3093(78)90118-7

    Article  ADS  Google Scholar 

  33. P. Němec, V. Nazabal, M. Dussauze, H.L. Ma, Y. Bouyrie, X.H. Zhang, Ga-Ge-Te amorphous thin films fabricated by pulsed laser deposition. Thin Solid Films 531, 454–459 (2013). https://doi.org/10.1016/j.tsf.2013.01.096

    Article  ADS  Google Scholar 

  34. P. Sharma, S.C. Katyal, Far-infrared transmission and bonding arrangement in Ge10Se90-xTex semiconducting glassy alloys. J. Non. Cryst. Solids. 354, 3836–3839 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.05.010

    Article  ADS  Google Scholar 

  35. E.M. Vinod, A.K. Singh, R. Ganesan, K.S. Sangunni, Effect of selenium addition on the GeTe phase change memory alloys. J. Alloys Compd. 537, 127–132 (2012). https://doi.org/10.1016/j.jallcom.2012.05.064

    Article  Google Scholar 

  36. D.R. Goyal, A.S. Maan, Far-infrared absorption in amorphous Sb15GexSe85 - x glasses. J. Non. Cryst. Solids. 183, 182–185 (1995). https://doi.org/10.1016/0022-3093(94)00550-8

    Article  ADS  Google Scholar 

  37. P. Jóvári, I. Kaban, B. Bureau, A. Wilhelm, P. Lucas, B. Beuneu, D.A. Zajac (2010) Structure of Te-rich Te-Ge-X (X = I, Se, Ga) glasses. J. Phys. Condens. Matter. 22. https://doi.org/https://doi.org/10.1088/0953-8984/22/40/404207.

  38. I. Voleská, J. Akola, P. Jóvári, J. Gutwirth, T. Wágner, T. Vasileiadis, S.N. Yannopoulos, R.O. Jones (2012) Structure, electronic, and vibrational properties of glassy Ga 11Ge 11Te 78: Experimentally constrained density functional study. Phys. Rev. B - Condens. Matter Mater. Phys. 86; 1–9. https://doi.org/https://doi.org/10.1103/PhysRevB.86.094108.

  39. S. Sen, E.L. Gjersing, B.G. Aitken, Physical properties of GexAs2xTe100 - 3x glasses and Raman spectroscopic analysis of their short-range structure. J. Non. Cryst. Solids. 356, 2083–2088 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.08.013

    Article  ADS  Google Scholar 

  40. N. Dong, Y. Chen, N. Wei, G. Wang, R. Wang, X. Shen, S. Dai, Q. Nie, Optical and structural properties of Ge-Ga-Te amorphous thin films fabricated by magnetron sputtering. Infrared Phys. Technol. 86, 181–186 (2017). https://doi.org/10.1016/j.infrared.2017.09.008

    Article  ADS  Google Scholar 

  41. G.A.M. Amin, A.F. Maged, Compositional dependence of the physical properties of Ge1Se9-xTex amorphous system. Mater. Chem. Phys. 97, 420–424 (2006). https://doi.org/10.1016/j.matchemphys.2005.08.037

    Article  Google Scholar 

  42. R. Svoboda, D. Brandova, Crystallization behavior of (GeTe4)x(GaTe3)100–x glasses for far-infrared optics applications. J. Alloys Compd. 770, 564–571 (2019). https://doi.org/10.1016/j.jallcom.2018.08.150

    Article  Google Scholar 

  43. A. Lecomte, V. Nazabal, D. Le Coq, L. Calvez, Ge-free chalcogenide glasses based on Ga-Sb-Se and their stabilization by iodine incorporation. J. Non. Cryst. Solids. 481, 543–547 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.11.046

    Article  ADS  Google Scholar 

  44. N. Sharma, S. Sharda, V. Sharma, P. Sharma, Far-infrared investigation of ternary Ge-Se-Sb and quaternary Ge-Se-Sb-Te chalcogenide glasses. J. Non. Cryst. Solids. 375, 114–118 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.04.065

    Article  ADS  Google Scholar 

  45. R. Pumlianmunga, N. Venkatesh, A. Naresh, E.S.R. Sankhla, K. Gopal, Ramesh, Influence of connectivity on the rigidity of the covalently bonded (GeTe4)100–x(As2Se3)x glasses. J. Non. Cryst. Solids. 447, 178–182 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.06.014

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to JIIT Noida for providing the XRD facility and SAIF, IIT Bombay, for FTIR facility. PS gratefully acknowledges SERB-DST, India, for “project file no. EMR/2014/001108, Dated 11/09/2015”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekta Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, E., Barman, P.B. & Sharma, P. Structural correlation of GeTeSeGa system by XRD and far-infrared spectroscopy. Appl. Phys. A 127, 345 (2021). https://doi.org/10.1007/s00339-021-04493-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04493-x

Keywords

Navigation