Skip to main content
Log in

ZnO nanowire arrays decorated with titanium nitride nanoparticles as surface-enhanced Raman scattering substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the potential of ZnO nanowire arrays decorated with titanium nitride (TiN) nanoparticles as surface-enhanced Raman scattering (SERS) substrates is demonstrated. ZnO nanowires were grown by hydrothermal synthesis while commercially obtained TiN powders were subjected to several hours of mechanical grinding to achieve 30–100 nm diameter nanoparticles. The nanoparticles were then dispersed in acetone and drop cast on the ZnO nanowire arrays for decoration. Scanning electron microscopy confirmed the presence of TiN nanoparticles on the ZnO nanowires. TiN nanoparticles exhibited multiple absorption features at 430, 520 and 600 nm. SERS experiments using Nile blue and methylene blue as the analyte molecules exhibited enhancement in the Raman signals. It is shown that the origin of the SERS effect is chemical in nature, with contribution from different interactions between the analyte molecule and the TiN nanoparticles. The current work, thus, represents a simple, cost-effective and facile method for the fabrication of TiN-based SERS substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R.A. Alvarez-Puebla, B. Auguié, J.J. Baumberg, G.C. Bazan, S.E. Bell, A. Boisen, A.G. Brolo, J. Choo et al., Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2019)

    Article  Google Scholar 

  2. A.I. Pérez-Jiménez, D. Lyu, Z. Lu, G. Liu, B. Ren, Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 11(18), 4563–4577 (2020)

    Article  Google Scholar 

  3. J.R. Lombardi, R.L. Birke, A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42, 734–742 (2009)

    Article  Google Scholar 

  4. E.C. Le Ru, S.A. Meyer, C. Artur, P.G. Etchegoin, J. Grand, P. Lang, F. Maurel, Experimental demonstration of surface selection rules for SERS on flat metallic surfaces. Chem. Commun. 47, 3903–3905 (2011)

    Article  Google Scholar 

  5. E.C. Le Ru, P.G. Etchegoin, Quantifying SERS enhancements. MRS Bull. 38, 631 (2013)

    Article  Google Scholar 

  6. G. McNay, D. Eustace, W.E. Smith, K. Faulds, D. Graham, Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl. Spectrosc. 65, 825–837 (2011)

    Article  ADS  Google Scholar 

  7. Y. Liu, H. Ma, X.X. Han, B. Zhao, Metal-semiconductor heterostructures for surface enhanced Raman scattering: synergistic contribution of plasmon and charge transfer. Mater. Horiz. (2020). https://doi.org/10.1039/D0MH01356K

    Article  Google Scholar 

  8. Y. Wu, M. Yang, W.U. Tyler, A.M. Martín, C. Zhu, G.C. Schatz, R.P. Van Duyne, SERS study of the mechanism of plasmon-driven hot electron transfer between gold nanoparticles and PCBM. J. Phys. Chem. C 123, 29908–29915 (2019)

    Article  Google Scholar 

  9. S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, Z.-Q. Tian, Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016)

    Article  ADS  Google Scholar 

  10. S. Hamad, G.K. Podagatlapalli, M.A. Mohiddon, S. Venugopal Rao, Surface enhanced fluorescence from corroles and SERS studies of explosives using copper nanostructures. Chem. Phys. Lett. 621, 171–176 (2015)

    Article  ADS  Google Scholar 

  11. U.P. Shaik, S. Hamad, M. Ahamad Mohiddon, S. Venugopal Rao, M. Ghanashyam Krishna, Morphologically manipulated Ag/ZnO nanostructures as surface enhanced Raman scattering probes for explosives detection. J. Appl. Phys. 119, 093103 (2016)

    Article  ADS  Google Scholar 

  12. G.V. Naik, J.L. Schroeder, X. Ni, A.V. Kildishev, T.D. Sands, A. Boltasseva, Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Exp. 2, 478–489 (2012)

    Article  ADS  Google Scholar 

  13. M. Gioti, J. Arvanitidis, D. Christofilos, K. Chaudhuri, T. Zorba, G. Abadias, D. Gall, V.M. Shalaev, A. Boltasseva, P. Patsalas, Plasmonic and phononic properties of epitaxial conductive transition metal nitrides. J. Opt. 22, 084001 (2020)

    Article  ADS  Google Scholar 

  14. T. Fu, Y. Chen, C. Du, W. Yang, R. Zhang, L. Sun, D. Shi, Numerical investigation of plasmon sensitivity and surface-enhanced Raman scattering enhancement of individual TiN nanosphere multimers. Nanotechnology 31, 135210 (2020)

    Article  ADS  Google Scholar 

  15. Y. Ma, D. Sikdar, A. Fedosyuk, L. Velleman, D.J. Klemme, S.H. Oh, A.R. Kucernak, A.A. Kornyshev, J.B. Edel, Electrotunable nanoplasmonics for amplified surface enhanced Raman spectroscopy. ACS Nano 14, 328–336 (2019)

    Article  Google Scholar 

  16. F. Zhao, X. Xue, W. Fu, Y. Liu, Y. Ling, Z. Zhang, TiN nanorods as effective substrate for surface-enhanced Raman scattering. J. Phys. Chem. C 123, 29353–29359 (2019)

    Article  Google Scholar 

  17. A.A. Popov, G. Tselikov, N. Dumas, C. Berard, K. Metwally, N. Jones, A. Al-Kattan, B. Larrat, D. Braguer, S. Mensah, A. Da Silva, Laser-synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications. Sci. Rep. 9, 1–11 (2019)

    Google Scholar 

  18. H. Wei, M. Wu, Z. Dong, Y. Chen, J. Bu, J. Lin, Y. Yu, Y. Wei, Y. Cui, R. Wang, Composition, microstructure and SERS properties of titanium nitride thin film prepared via nitridation of sol–gel derived titania thin films. J. Raman Spectrosc. 48, 578–585 (2017)

    Article  ADS  Google Scholar 

  19. I. Lorite, A. Serrano, A. Schwartzberg, J. Bueno, J.L. Costa-Krämer, Surface enhanced Raman spectroscopy by titanium nitride non-continuous thin films. Thin Solid Films 531, 144–146 (2013)

    Article  ADS  Google Scholar 

  20. J. Zhao, J. Lin, H. Wei, X. Li, W. Zhang, G. Zhao, J. Bu, Y. Chen, Surface enhanced Raman scattering substrates based on titanium nitride nanorods. Opt. Mater. 47, 219–224 (2015)

    Article  ADS  Google Scholar 

  21. N. Kaisar, Y.T. Huang, S. Jou, H.F. Kuo, B.R. Huang, C.C. Chen, Y.F. Hsieh, Y.C. Chung, Surface-enhanced Raman scattering substrates of flat and wrinkly titanium nitride thin films by sputter deposition. Surf. Coat. Technol. 337, 434–438 (2018)

    Article  Google Scholar 

  22. K. Vasu, M. Ghanashyam Krishna, K.A. Padmanabhan, Substrate-temperature dependent structure and composition variations in RF magnetron sputtered titanium nitride thin films. Appl. Surf. Sci. 257, 3069–3074 (2011)

    Article  ADS  Google Scholar 

  23. Y. Rajesh, S.K. Padhi, M. Ghanashyam Krishna, ZnO thin film-nanowire array homostructures with tunable photoluminescence and optical band gap. RSC. Adv. 10, 25721–25729 (2020)

    Article  ADS  Google Scholar 

  24. C.P. Constable, J. Yarwood, W.-D. Münz, Raman microscopic studies of PVD hard Coatings. Surf. Coat. Technol. 116, 155–159 (1999)

    Article  Google Scholar 

  25. B. Subramanian, M. Jayachandran, Characterization of reactive magnetron sputtered nanocrystalline titanium nitride (TiN) thin films with brush plated Ni interlayer. J. Appl. Electrochem. 37, 1069–1075 (2007)

    Article  Google Scholar 

  26. C. Zhang, Y. Xu, J. Liu, J. Li, J. Xiang, H. Li, J. Li, Q. Dai, S. Lan, A.E. Miroshnichenko, Lighting up silicon nanoparticles with Mie resonances. Nat. Commun. 9, 2964 (2018)

    Article  ADS  Google Scholar 

  27. M.S.S. Bharati, C. Byram, S. Venugopal Rao, Gold-nanoparticle-and nanostar-loaded paper-based SERS substrates for sensing nanogram-level Picric acid with a portable Raman spectrometer. Bull. Mater. Sci. 43(1), 1–8 (2020)

    Article  Google Scholar 

  28. M.S.S. Bharati, C. Byram, S. Venugopal Rao, Explosives sensing using Ag–Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation. RSC. Adv. 9, 1517–1525 (2019)

    Article  ADS  Google Scholar 

  29. S.I. Kudryashov, P.A. Danilov, A.P. Porfirev, I.N. Saraeva, T.H.T. Nguyen, A.A. Rudenko, R.A. Khmelnitskii, D.A. Zayarny, A.A. Ionin, A.A. Kuchmizhak, S.N. Khonina, O.B. Vitrik, High-throughtput micropatterning of plasmonic surfaces by multiplexed femotosecond laser pulses for advanced IR-sensing applications. Appl. Surf. Sci. 484, 948–956 (2019)

    Article  ADS  Google Scholar 

  30. J.B. Yoo, H.J. Yoo, H.J. Jung, H.S. Kim, S. Bang, J. Choi, H. Suh, J.H. Lee, J.G. Kim, N.H. Hur, Titanium oxynitride microspheres with the rock-salt structure for use as visible-light photocatalysts. J. Mater. Chem. A 4, 869–876 (2016)

    Article  Google Scholar 

  31. S. Zhu, D. Wang, Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 7, 1700841 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Y. Rajesh acknowledges a NFHE Ph.D. fellowship awarded by UGC. M.S.S. Bharati and S. Venugopal Rao acknowledge DRDO financial support through ACRHEM, University of Hyderabad. Center for Nanotechnology and School of Physics, University of Hyderabad, India are acknowledged for facilities. The support of DST-PURSE, UGC-DRS, UGC-NRC programmes is also acknowledged. S. Venugopal Rao acknowledges the University of Hyderabad for the IoE project [Ref. No. UOH/IOE/RC1/RC1-20-016]. The IoE scheme was sanctioned vide MHRD notification F11/9/2019-U3(A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghanashyam Krishna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh, Y., Bharati, M.S.S., Rao, S.V. et al. ZnO nanowire arrays decorated with titanium nitride nanoparticles as surface-enhanced Raman scattering substrates. Appl. Phys. A 127, 270 (2021). https://doi.org/10.1007/s00339-021-04424-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04424-w

Keywords

Navigation