Skip to main content
Log in

High-temperature oxidation behavior of TiC and TiC + TiB reinforced TB8 matrix composites prepared by spark plasma sintering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

TB8 (Ti-13.58Mo-2.15Nb-3.27A1-0.21Si) is a metastable β titanium alloy with excellent mechanical properties. In this paper, TiC/TB8 and TiC + TiB/TB8 titanium matrix composites (TMCs) were prepared by spark plasma sintering (SPS). In addition, the cyclic oxidation interval measurement method was used to compare the high-temperature oxidation behavior of TB8 titanium alloys with different volume fractions of TiC and TiC + TiB reinforced TB8 composites. Studies have shown that after cyclic oxidation at 800 °C for 100 h, the oxidation law of TB8 is a mixture of linear and parabolic, while TMC1 (2.5 vol.% TiC), TMC3 (5 vol.% TiC) and TMC4 (3.5 vol.% TiC + 3.5 vol.% TiB) oxidation mainly follows the parabolic law. Moreover, the oxidation weight gain of TB8 after oxidation is as high as 9.83 mg/cm2, while the oxidation weight gain of TMC1, TMC3 and TMC4 is only 5.95 mg/cm2, 6.81 mg/cm2 and 2.83 mg/cm2. It shows that during the entire oxidation process, the order of excellent high-temperature oxidation resistance is TMC4 > TMC1 > TMC3 > TB8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Sun et al., A new titanium alloy with a combination of high strength, high strain hardening and improved ductility. Scripta Mater. 94, 17–20 (2015)

    Article  ADS  Google Scholar 

  2. S. Sadeghpour et al., A new multi-element beta titanium alloy with a high yield strength exhibiting transformation and twinning induced plasticity effects. Scripta Mater. 145, 104–108 (2018)

    Article  Google Scholar 

  3. C. Veiga, J.P. Davim, A.J.R. Loureiro, Properties and applications of titanium alloys: a brief review. Rev. Adv. Mater. Sci. 32(2), 133–148 (2012)

    Google Scholar 

  4. S. Zherebtsov, G. Salishchev, Production, properties and application of ultrafine-grained titanium alloys. Mater. Sci. Forum 838–839, 294–301 (2016)

    Article  Google Scholar 

  5. R.R. Boyer, R.D. Briggs, The use of β titanium alloys in the aerospace industry. J. Mater. Eng. Perform. 14, 681–685 (2005)

    Article  Google Scholar 

  6. S. Sun et al., Microstructural characteristics and mechanical properties of in situ synthesized (TiB+TiC)/TC18 composites. Mater. Sci. Eng. A 530, 602–606 (2011)

    Article  Google Scholar 

  7. B. Zheng et al., Microstructure and tribological behavior of in situ synthesized (TiB+TiC)/Ti6Al4V(TiB/TiC=1/1) composites. Tribol. Int. 145, 106177 (2020)

    Article  Google Scholar 

  8. C. Cai, S. He, L.F. Li, Q. Teng, B. Song, C.Z. Yan, Q.S. Wei, Y.S. Shi, In-situ TiB/Ti- 6Al-4V composites with a tailored architecture produced by hot isostatic pressing: microstructure evolution, enhanced tensile properties and strengthening mechanisms. Compos. B Eng. 164, 546–558 (2019)

    Article  Google Scholar 

  9. Z. Cao, X.D. Wang, J.L. Li, Y. Wu, H.P. Zhang, J.Q. Guo, S.Q. Wang, Reinforcement with graphene nanoflakes in titanium matrix composites. J. Alloys Compd. 696, 498–502 (2017)

    Article  Google Scholar 

  10. S. Tkachenko, J. Cizek, R. Muˇ s´ alek, K. Dvoˇ r´ ak, Z. Spotz, E.B. Montufar, T. Chr´ aska, I. Kˇ rupka, L. ˇCelko, Metal matrix to ceramic matrix transition via feedstock processing of SPS titanium composites alloyed with high silicone content. J. Alloys Compd. 764, 776–788 (2018)

    Article  Google Scholar 

  11. T. Borkar, S. Nag, Y. Ren, J. Tiley, R. Banerjee, Reactive spark plasma sintering (SPS) of nitride reinforced titanium alloy composites. J. Alloys Compd. 617, 933–945 (2014)

    Article  Google Scholar 

  12. A.S. Namini, S.A. Delbari, B. Nayebi, M.S. Asl, S. Parvizi, Effect of B4C content on sintering behavior, microstructure and mechanical properties of Ti-based composites fabricated via spark plasma sintering. Mater. Chem. Phys. 251, 123087 (2020)

    Article  Google Scholar 

  13. A. Muthuchamy, G.D. Janaki Ram, V. Subramanya Sarma, Spark plasma consolidation of continuous fiber reinforced titanium matrix composites. Mater. Sci. Eng. A 703, 461–469 (2017)

    Article  Google Scholar 

  14. A.S. Namini, S.A. Delbari, B. Nayebi, M.S. Asl, S. Parvizi, Effect of B4C content on sintering behavior, microstructure and mechanical properties of Ti-based composites fabricated via spark plasma sintering. Mater. Chem. Phys. 251, 123087 (2020)

    Article  Google Scholar 

  15. Pengchao Kang, Qiqi Zhao, Shiqi Guo, Wei Xue, Hao Liu, Zhenlong Chao, Longtao Jiang, Wu. Gaohui, Optimisation of the spark plasma sintering process for high volume fraction SiCp/Al composites by orthogonal experimental design. Ceram. Int. 240, 3816–3825 (2020)

    Google Scholar 

  16. L.J. Huang, L. Geng, H.X. Peng, B. Kaveendran, High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture. Mater. Sci. Eng. A 534, 688–692 (2012)

    Article  Google Scholar 

  17. Y. Qin, L.U. Weijie, X.U. Dong et al., High-temperature OM investigation of the early stage of (TiC+TiB)/Ti oxidation[J]. J. Mater. Sci. 40(3), 687–692 (2005)

    Article  ADS  Google Scholar 

  18. Z. Liang, Y. Wang, Y. Gui et al., Micro-structural evolution of oxide scales formed on a Nb-Stabilizing heat-resistant steel at the initial stage in high-temperature water vapor[J]. Mater. Chem. Phys. 242, 122443 (2020)

    Article  Google Scholar 

  19. J.R. Rumble et al., The NIST x-ray photoelectron spectroscopy database[J]. Surf. Interface Anal. 19(1–12), 241–246 (1992)

    Article  Google Scholar 

  20. M.D. Segall, P.J.D. Linda, M.J. Probert et al., First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2001)

    Article  ADS  Google Scholar 

  21. W.H. Xiao, L. Zhang, H.R. Jiang, Effects of Si on high temperature oxidation resistance of TiAl alloy[J]. J. Beijing Univ. Aeronaut. Astronaut. 32, 365–368 (2006)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Projects of the 13th Five-Year Plan Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China (No: 6140922010201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, B., Xu, X., Li, C. et al. High-temperature oxidation behavior of TiC and TiC + TiB reinforced TB8 matrix composites prepared by spark plasma sintering. Appl. Phys. A 127, 303 (2021). https://doi.org/10.1007/s00339-021-04389-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04389-w

Keywords

Navigation