Skip to main content
Log in

Thickness-dependent frictional behavior of topological insulator Bi2Se3 nanoplates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Two-dimensional Bi2Se3 TIs were recently found to be the most promising room-temperature topological insulators for its relatively large bulk gap, but its surface frictional response is little investigated. Here, we prepared single-crystalline Bi2Se3 nanoplates with a lateral dimension up to ~ 1 μm and a thickness of less than 200 nm via a simple polyol method, and the molecular structure and morphology were characterized in detail using different methods. The micro-frictional behavior of Bi2Se3 nanoplates with different thickness is inventively investigated with AFM technique. The atomic stick–slip friction stemming from periodic crystal lattice, and the larger friction force of thinner nanoplates is attributed to the larger adhesion force and enhanced energy dissipation. This work has, for the first time, built the link of the behavior of topological protected surface and mechanical friction behavior of Bi2Se3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nature 460, 1101–1105 (2009)

    ADS  Google Scholar 

  2. Y. Zhang, K. He, C.Z. Chang, C.L. Song, L.L. Wang, X. Chen, J.F. Jia, Z. Fang, X. Dai, W.Y. Shan, S.Q. Shen, Q. Niu, X.L. Qi, S.C. Zhang, X.C. Ma, Q.K. Xue, Nat. Phys. 6, 584–588 (2010)

    Google Scholar 

  3. A. Soni, Z. Yanyuan, Y. Ligen, K.K.A. Michael, S.D. Mildred, Q. Xiong, Nano Lett. 12, 1203–1209 (2012)

    ADS  Google Scholar 

  4. A. Datta, J. Paul, A. Kar, P. Amitava, Z. Sun, L. Chen, M. Joshua, S.N. George, Cryst. Growth Des. 10, 3983–3989 (2010)

    Google Scholar 

  5. A. Soni, Y. Shen, M. Yin, Y. Zhao, L. Yu, X. Hu, Z. Dong, A.K. Khiam, S.D. Mildred, Q. Xiong, Nano Lett. 12, 4305–4310 (2012)

    ADS  Google Scholar 

  6. Z. Sun, S. Liufu, X. Chen, L. Chen, CrystEngComm 12, 2672–2674 (2010)

    Google Scholar 

  7. Y. Sargolzaeiaval, V.P. Ramesh, T.V. Neumann, V. Misra, D. Vashaee, M.D. Dickey, M.C. Öztürk, Appl. Energy 262, 114370 (2020)

    Google Scholar 

  8. F. Suarez, D.P. Parekh, C. Ladd, D. Vashaee, M.D. Dickey, M.C. Öztürk, Appl. Energy 202, 736–745 (2017)

    Google Scholar 

  9. D. Hsieh, Y. Xia, D. Qian, Y. Wray, F. Meier, J.H. Dil, J. Osterwalder, L. Patthey, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Phys. Rev. Lett. 103, 146401 (2009)

    ADS  Google Scholar 

  10. H. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang, Nat Phys. 5, 438–442 (2009)

    Google Scholar 

  11. J.E. Moore, Nature 464, 194–198 (2009)

    ADS  Google Scholar 

  12. J. Moore, Nat Phys. 5, 378–380 (2009)

    Google Scholar 

  13. V.V. Atuchin, V.A. Golyashov, K.A. Kokh, I.V. Korolkov, A.S. Kozhukhov, V.N. Kruchinin, V.N. Kruchuinin, L.D. Pokrovsky, I.P. Prosvirin, K.N. Romanyuk, O.E. Tereshchenko, Cryst. Growth Des. 11, 5507–5514 (2011)

    Google Scholar 

  14. L. Viti, D. Coquillat, A. Politano, K.A. Kokh, Z.S. Aliev, M.B. Babanly, M.S. Vitiello, Nano Lett. 16, 80–87 (2016)

    ADS  Google Scholar 

  15. C. Yang, M. Cattelan, N. Fox, Y. Huang, M.S. Golden, W. Schwarzacher, Langmuir 35, 2983–2988 (2019)

    Google Scholar 

  16. L. Fu, C.L. Kane, E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007)

    ADS  Google Scholar 

  17. L. Fu, Phys. Rev. Lett. 106, 106802 (2011)

    ADS  Google Scholar 

  18. M.L. Cafaro, G. Bardi, V. Piacente, J. Chem. Eng. Data 29, 78–80 (1984)

    Google Scholar 

  19. L. Ren, X. Qi, Y. Liu, G. Hao, Z. Huang, X. Zou, L. Yang, J. Li, J. Zhong, J. Mater. Chem. 22, 4921–4926 (2012)

    Google Scholar 

  20. Y. Li, G. Wang, X.-G. Zhu, M.-H. Liu, C. Ye, X. Chen et al., Adv. Mater. 22, 4002–4007 (2010)

    Google Scholar 

  21. M. Liu, C.-Z. Chang, Z. Zhang, Y. Zhang, W. Ruan, K. He, L. Wang, X. Chen, J. Jia, S. Zhang, Q. Xue, X. Ma, Y. Wang, Phys. Rev. B 83, 165440 (2011)

    ADS  Google Scholar 

  22. Y. Liu, M. Weinert, L. Li, Phys. Rev. Lett. 108, 115501 (2012)

    ADS  Google Scholar 

  23. D. Teweldebrhan, V. Goyal, A.A. Balandin, Nano Lett. 10, 1209–1218 (2010)

    ADS  Google Scholar 

  24. M.Z. Hossain, S.L. Rumyantsev, K.M.F. Shahil et al., ACS Nano 5, 2657–2663 (2011)

    Google Scholar 

  25. J. Waters, D. Crouch, J. Raftery et al., Chem. Mater. 16, 3289–3298 (2004)

    Google Scholar 

  26. D.S. Kong, J.C. Randel, H.L. Peng et al., Nano Lett. 10, 329–333 (2010)

    ADS  Google Scholar 

  27. D.S. Kong, W.H. Dang, J.J. Cha et al., Nano Lett. 10, 2245–2250 (2010)

    ADS  Google Scholar 

  28. Y. Min, G.D. Moon, B.S. Kim et al., J. Am. Chem. Soc. 134, 2872–2875 (2012)

    Google Scholar 

  29. N.V. Tarakina, S. Schreyeck, T. Borzenko et al., Cryst. Growth Des. 12, 1913–1918 (2012)

    Google Scholar 

  30. Z. Deng, A. Smolyanitsky, Q.Y. Li et al., Nat. Mater. 11, 1032–1037 (2012)

    ADS  Google Scholar 

  31. T. Filleter, J.L. McChesney, A. Bostwick et al., Phys. Rev. Lett. 102, 086102 (2009)

    ADS  Google Scholar 

  32. J. Quereda, A. Castellanos-Gomez, N. Agrait et al., Appl. Phys. Lett. 105, 053111 (2014)

    ADS  Google Scholar 

  33. A.K. Bohra, R. Bhatt, A. Singh, R. Basu, S. Bhattacharya, K.N. Meshram et al., Energy Convers. Manag. 145, 415–424 (2017)

    Google Scholar 

  34. V.V. Atuchin, S.V. Borisov, T.A. Gavrilova, K.A. Kokh, N.V. Kuratieva, N.V. Pervukhina, Particuology 26, 118–122 (2016)

    Google Scholar 

  35. P. Hu, Y. Cao, D. Jia, L. Wang, Mater. Lett. 64, 493–496 (2010)

    Google Scholar 

  36. J. Krim, Adv. Phys. 61, 155–323 (2012)

    ADS  Google Scholar 

  37. J. Zhang, Z.P. Peng, A. Soni et al., Nano Lett. 11, 2407–2414 (2011)

    ADS  Google Scholar 

  38. Y. Jiang, Y. Wang, J. Sagendorf et al., Nano Lett. 13, 2851–2856 (2013)

    ADS  Google Scholar 

  39. M. Dienwiebel, G.S. Verhoeven, N. Pradeep et al., Phys Rev Lett 92(12), 126101 (2004)

    ADS  Google Scholar 

  40. N.A. Burnham, R.J. Colton, H.M. Pollock, Nanotechnology 4(2), 64 (1993)

    ADS  Google Scholar 

  41. Y. Dong, J. Phys. D Appl. Phys. 47, 055305 (2014)

    ADS  Google Scholar 

  42. D. Yildiz, M. Kisiel, U. Gysin, O. Gürlü, E. Meyer, Nat. Mater. 18, 1201–1206 (2019)

    ADS  Google Scholar 

Download references

Acknowledgment

This work was financially sponsored in part by the National Key Projects (Grant No. 2017YFA0205800). Part of this work was supported by the Natural Science Foundation of China (Grants No. 51978153) and the Natural Science Foundation of Jiangsu Province (BK20191023), Scientific Research Foundation of Nanjing Institute of Technology (YJK201909).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zengmei Wang, Qunyang Li, Zhenxiang Cheng or Tong Zhang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Wang, Z., Yao, Q. et al. Thickness-dependent frictional behavior of topological insulator Bi2Se3 nanoplates. Appl. Phys. A 126, 285 (2020). https://doi.org/10.1007/s00339-020-3452-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3452-5

Keywords

Navigation