Skip to main content
Log in

The binding energy of biexcitons in alloy ZnxCd1−xS quantum dots detected by femtosecond laser spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Biexcitons localized at ZnxCd1−xS quantum dots (x = 0.37 or 0.45) with a diameter of ~ 45 Å synthesized by two different methods were studied by femtosecond laser spectroscopy. The spectral features of ultrafast transient absorption spectra at the short-time delay of 70 fs are associated with the three lowest energy transitions of quantum dots. The shapes of the transient absorption bands were modeled by fitting to linear absorption. The spectral positions of the absorption components of the excited state in the transient spectra take into account the energy of the biexciton coupling. By fitting the experimental transient absorption spectra of ZnxCd1−xS QDs, the binding energies of biexcitons were determined. The biexciton binding energies vary from 16.6 to 37 meV depending on the biexciton transition excited at the ZnxCd1−xS quantum dot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Herz, T. Kümmell, G. Bacher, A. Forchel, B. Jobst, D. Hommel, G. Landwehr, Phys. Rev. B 56, 15261 (1997)

    Article  ADS  Google Scholar 

  2. V.I. Klimov, Annu. Rev. Phys. Chem. 58, 635 (2007)

    Article  ADS  Google Scholar 

  3. R.D. Harris, S. Bettis Homan, M. Kodaimati, C. He, A.B. Nepomnyashchii, N.K. Swenson, S. Lian, R. Calzada, E.A. Weiss, Chem. Rev. 116, 12865 (2016)

    Article  Google Scholar 

  4. K.Y. Zhang, Q. Yu, H. Wei, S. Liu, Q. Zhao, W. Huang, Chem. Rev. 118, 1770 (2018)

    Article  Google Scholar 

  5. V. Nadtochenko, N. Denisov, A. Aybush, F. Gostev, I. Shelaev, A. Titov, S. Umanskiy, D. Cherepanov, Nanomaterials 7 (2017)

  6. O. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, L.S. Li, Nanoscale 10, 5650 (2018)

    Article  Google Scholar 

  7. J.Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, I. Moreels, Nat. Nanotechnol. 9, 891 (2014)

    Article  ADS  Google Scholar 

  8. F. Sotier, T. Thomay, T. Hanke, J. Korger, S. Mahapatra, A. Frey, K. Brunner, R. Bratschitsch, A. Leitenstorfer, Nat. Phys. 5, 352 (2009)

    Article  Google Scholar 

  9. D.J. Norris, A.L. Efros, M. Rosen, M.G. Bawendi, Phys. Rev. B 53, 16347 (1996)

    Article  ADS  Google Scholar 

  10. M. Iwanaga, T. Mano, N. Ikeda, Appl. Phys. A Mater. Sci. Process. 124 (2018)

  11. H. R. Ghenaatian, M. Shakourian-Fard, M. R. Moghadam, G. Kamath, M. Rahmanian, Appl. Phys. A Mater. Sci. Process. 125 (2019)

  12. P.C. Sercel, A.L. Efros, Nano Lett. 18, 4061 (2018)

    Article  ADS  Google Scholar 

  13. D.M. Sagar, R.R. Cooney, S.L. Sewall, P. Kambhampati, J. Phys. Chem. C 112, 9124 (2008)

    Article  Google Scholar 

  14. G.S. Boltaev, D.J. Fu, B.R. Sobirov, M.S. Smirnov, O.V. Ovchinnikov, A.I. Zvyagin, R.A. Ganeev, Opt. Express 26, 13865 (2018)

    Article  ADS  Google Scholar 

  15. D.V. Petrov, B.S. Santos, G.A.L. Pereira, C. De Mello Donegá, J. Phys. Chem. B 106, 5325 (2002)

    Article  Google Scholar 

  16. A.L. Rogach, Semiconductor Nanocrystal Quantum Dots Synthesis, Assembly, Spectroscopy and Applications (Springer, Berlin, 2008)

    Google Scholar 

  17. P.P. Ingole, Phys. Chem. Chem. Phys. 21, 4695 (2019)

    Article  Google Scholar 

  18. A. Lesiak, K. Drzozga, J. Cabaj, M. Bański, K. Malecha, A. Podhorodecki, Nanomaterials 9, 192 (2019)

    Article  Google Scholar 

  19. F. Antolini, L. Orazi, Front. Chem. 7, 252 (2019)

    Article  ADS  Google Scholar 

  20. X. Zhong, Y. Feng, W. Knoll, M. Han, J. Am. Chem. Soc. 125, 13559 (2003)

    Article  Google Scholar 

  21. K.H. Lee, J.H. Lee, H.D. Kang, C.Y. Han, S.M. Bae, Y. Lee, J.Y. Hwang, H. Yang, J. Alloys Compd. 610, 511 (2014)

    Article  Google Scholar 

  22. B.A. Korgel, H.G. Monbouquette, Langmuir 16, 3588 (2000)

    Article  Google Scholar 

  23. S.K. Kulkarni, U. Winkler, N. Deshmukh, P.H. Borse, R. Fink, E. Umbach, Appl. Surf. Sci. 169–170, 438 (2001)

    Article  ADS  Google Scholar 

  24. W. Wang, I. Germanenko, M.S. El-Shall, Chem. Mater. 14, 3028 (2002)

    Article  Google Scholar 

  25. V.I. Klimov, J. Phys. Chem. B 104, 6112 (2000)

    Article  Google Scholar 

  26. D. Morgan, K. Gong, A.M. Kelley, D.F. Kelley, J. Phys. Chem. C 121, 18307 (2017)

    Article  Google Scholar 

  27. U. Woggon, K. Hild, F. Gindele, W. Langbein, M. Hetterich, M. Grün, C. Klingshirn, Phys. Rev. B Condens. Matter Mater. Phys. 61, 12632 (2000)

    Article  ADS  Google Scholar 

  28. D.A. Cherepanov, F.E. Gostev, I.V. Shelaev, N.N. Denisov, V.A. Nadtochenko, Nanoscale 10, 22409 (2018)

    Article  Google Scholar 

  29. V. Klimov, Phys. Rev. B 50, 8110 (1994)

    Article  ADS  Google Scholar 

  30. C. Zhang, T.N. Do, X. Ong, Y. Chan, H.S. Tan, Chem. Phys. 481, 157 (2016)

    Article  Google Scholar 

  31. H. Spöcker, M. Portuné, U. Woggon, Opt. Lett. 23, 427 (1998)

    Article  ADS  Google Scholar 

  32. K.I. Kang, A.D. Kepner, S.V. Gaponenko, S.W. Koch, Y.Z. Hu, N. Peyghambarian, Phys. Rev. B 48, 15449 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was supported by Russian Science Foundation Grant 17-13-01506. The authors thank Dr. D. Cherepanov for this help in analyzing the experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Nadtochenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadtochenko, V., Kostrov, A., Titov, A. et al. The binding energy of biexcitons in alloy ZnxCd1−xS quantum dots detected by femtosecond laser spectroscopy. Appl. Phys. A 126, 287 (2020). https://doi.org/10.1007/s00339-020-3432-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3432-9

Keywords

Navigation