Skip to main content
Log in

Crystal structure and XANES study of Sn-substituted YBa2Cu3O7-y powder prepared by solid-state synthesis method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research, the crystal and chemical characterizations of Sn-substituted YBa2Cu3O7-y (YBCO) powder were studied. The experimental powder samples of (Y1-xSnx)Ba2Cu3O7-y (0 ≤ x ≤ 0.2) were prepared using the solid-state synthesis method. The starting precursor powders in appropriate ratios were mixed and calcined at 880 °C for 12 h in a normal atmosphere. The calcined powders were investigated for phase content using the X-ray diffraction technique (XRD). The microstructure of the powders was investigated by scanning electron microscopy (SEM). The chemical composition was carried out by energy-dispersive X-ray analysis (EDX). In addition, the details of the oxidation state of Sn and Cu determined by X-ray absorption near-edge structure (XANES) spectroscopy was also analyzed and discussed in relation to the cationic site substitution and variation in the local structure. It was found that the indexing of the XRD pattern showed Sn-substituted YBCO main peaks, and the impurity peaks of BaSnO3 and BaCuO2 were also found in the pattern. The small solubility of Sn in YBCO matrix was the major factor which induced the formation of the latter secondary phase. SEM images of the particles indicated that they possessed an irregular shape with a particle-size range of 1–3 μm. Sn L3-edge XANES spectra indicated that the average formal valence of Sn was Sn2+/Sn4+. The Cu K-edge spectra helped confirm that the Sn ions could not substitute Cu site in YBCO structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Harrabi, A.F. Salem, K. Ziq, A.I. Mansour, S. Kunwar, J.P. Maneval, G. Berdiyorov, Appl. Phys. A Mater. 117, 2033 (2014)

    ADS  Google Scholar 

  2. G.Y. Zhang, H. Zhang, S.L. Tan, P.X. Zhang, T.Y. Tseng, H.U. Habermeier, C.T. Lin, P. Singjai, Appl. Phys. A Mater. 116, 1033 (2014)

    ADS  Google Scholar 

  3. M.J. Gouge, J.A. Demko, R.C. Duckworth, D.T. Lindsay, C.M. Rey, M.L. Roden, J.C. Tolbert, I.E.E.E.T. Appl, Supercon. 17, 1708 (2007)

    Google Scholar 

  4. L.C. Pathak, S.K. Mishra, D. Bhattacharya, K.L. Chopra, Mater. Sci. Eng. B Adv. 110, 119 (2004)

    Google Scholar 

  5. K. Kyoichi, M. Azusa, S. Hiroyuki, I. Takao, W. Takao, Y. Tomoaki, Jpn. J. Appl. Phys. 27, L1642 (1988)

    Google Scholar 

  6. P. Prayoonphokkharat, P. Amonpattaratkit, A. Watcharapasorn, Electron. Mater. Lett. 15, 377 (2019)

    ADS  Google Scholar 

  7. C.H. Gardiner, S.J.S. Lister, A.T. Boothroyd, N.H. Andersen, A.A. Zhokhov, A. Stunault, A. Hiess, Appl. Phys. A Mater. 74, s898 (2002)

    ADS  Google Scholar 

  8. Y. Slimani, E. Hannachi, M.K. Ben Salem, F. Ben Azzouz, M. Ben Salem, Appl. Phys. A 124, 91 (2018)

    ADS  Google Scholar 

  9. R.K. Singhal, J. Alloy. Compd. 495, 1 (2010)

    Google Scholar 

  10. J.B. Boyce, F. Bridges, T. Claeson, R.S. Howland, T.H. Geballe, M. Nygren, Physica C 153–155, 852 (1988)

    ADS  Google Scholar 

  11. M. Nakaura, T. Ozawa, K. Saiga, S. Kumazawa, H. Katoh, K. Ishida, H. Ozawa, K. Ohsumi, J. Phys. Soc. Jpn. 64, 3336 (1995)

    ADS  Google Scholar 

  12. P. Li, J. Zhang, G. Cao, C. Jing, S. Cao, Phys. Rev. B. 69, 224517 (2004)

    ADS  Google Scholar 

  13. V.P.N. Padmanaban, K. Shahi, Physica C 208, 263 (1993)

    ADS  Google Scholar 

  14. Y. Saito, T. Noji, A. Endo, N. Higuchi, K. Fujimoto, T. Oikawa, A. Hattori, K. Furuse, Jpn. J. Appl. Phys. 26, L832 (1987)

    ADS  Google Scholar 

  15. R.K. Singhal, Mater. Lett. 65, 825 (2011)

    Google Scholar 

  16. J.M. Tarascon, L.H. Greene, P. Barboux, W.R. McKinnon, G.W. Hull, T.P. Orlando, K.A. Delin, S. Foner, E.J. McNiff, Phys. Rev. B. 36, 8393 (1987)

    ADS  Google Scholar 

  17. A.K. Tyagi, K. Shahi, Phys. Status. Solidi. A 132, 425 (1992)

    ADS  Google Scholar 

  18. T. Saito, K. Mizuno, H. Watanabe, K. Koto, Physica C 171, 167 (1990)

    ADS  Google Scholar 

  19. R.P. Sharma, K.G. Prasad, B. Jayaram, S.K. Agarwal, A. Gupta, A.V. Narlikar, Phys. Lett. A 128, 217 (1988)

    ADS  Google Scholar 

  20. P. McGinn, W. Chen, N. Zhu, L. Tan, C. Varanasi, S. Sengupta, Appl. Phys. Lett. 59, 120 (1991)

    ADS  Google Scholar 

  21. I. Monot, T. Higuchi, N. Sakai, M. Murakami, Physica C 233, 155 (1994)

    ADS  Google Scholar 

  22. C. Varanasi, D. Balkin, P. McGinn, Mater. Lett. 13, 363 (1992)

    Google Scholar 

  23. D.Y. Zhang, G.M. Wang, Y.X. Wang, Z. Wang, Y.H. Zhang, Solid. State. Commun. 75, 629 (1990)

    ADS  Google Scholar 

  24. S. Wei, F. Liu, S. Cao, J. Zhang, Mater. Lett. 35, 270 (1998)

    Google Scholar 

  25. W. Klysubun, P. Tarawarakarn, N. Thamsanong, P. Amonpattaratkit, C. Cholsuk, S. Lapboonrueng, S. Chaichuay, W. Wongtepa, Radiat. Phys. Chem. In press. (2019). https://doi.org/10.1016/j.radphyschem.2019.02.004

    Article  Google Scholar 

  26. B. Ravel, M. Newville, J. Synchrotron. Rad. 12, 537 (2005)

    Google Scholar 

  27. P. Prayoonphokkharat, S. Jiansirisomboon, A. Watcharapasorn, Electron. Mater. Lett. 9, 413 (2013)

    ADS  Google Scholar 

  28. Y.P. Yadava, D.A. Landinez Tellez, M.T. de Melo, J.M. Ferreira, J. Albino Aguiar, Appl. Phys. A 66, 455 (1998)

    ADS  Google Scholar 

  29. J.E. Rodríguez, J. López, Phys B 387, 143 (2007)

    ADS  Google Scholar 

  30. Z. Xiao, H. Lei, X. Zhang, Y. Zhou, H. Hosono, T. Kamiya, B. Chem, Soc. Jpn. 88, 1250 (2015)

    Google Scholar 

  31. N.M. Strickland, E.F. Talantsev, J.A. Xia, N.J. Long, M.W. Rupich, L. Xiaoping, Z. Wei, I.E.E.E.T. Appl, Supercon. 19, 3140 (2009)

    Google Scholar 

  32. Y. Miyanaga, R. Teranishi, K. Yamada, N. Mori, M. Mukaida, T. Kiss, M. Inoue, K. Nakaoka, M. Yoshizumi, T. Izumi, Y. Shiohara, M. Nanba, S. Awaji, K. Watanabe, Physica C 469, 1418 (2009)

    ADS  Google Scholar 

  33. R. Teranishi, Y. Miyanaga, K. Yamada, N. Mori, M. Mukaida, M. Inoue, T. Kiss, M. Miura, M. Yoshizumi, T. Izumi, M. Namba, S. Awaji, K. Watanabe, J. Phys. Conf. Ser. 234, 022039 (2010)

    Google Scholar 

  34. S. Ye, H. Suo, Z. Wu, M. Liu, Y. Xu, L. Ma, M. Zhou, Physica C 471, 265 (2011)

    ADS  Google Scholar 

  35. J.L. Sobolik, H. Wang, W.J. Thomson, J. Am. Ceram. Soc. 77, 2738 (1994)

    Google Scholar 

  36. C. Andreouli, A. Tsetsekou, Physica C 291, 274 (1997)

    ADS  Google Scholar 

  37. P. Prayoonphokkharat, S. Jiansirisomboon, A. Watcharapasorn, J Microsc Soc Thailand 5, 63 (2012)

    Google Scholar 

  38. P. Boonsong, P. Wannasut, A. Rachakom, A. Watcharapasorn, Chiang Mai. J. Sci. 45(4), 1835 (2018)

    Google Scholar 

  39. A.M. Azad, O.M. Sreedharan, K.T. Jacob, B. Mater, Sci. 14, 983 (1991)

    Google Scholar 

  40. K. Borowiec, K. Kolbrecka, J. Alloy. Compd. 176, 225 (1991)

    Google Scholar 

  41. F. Zhanguo, J. Chunlin, X. Zhengping, G. Zhongyi, Supercond. Sci. Tech. 2, 43 (1989)

    ADS  Google Scholar 

  42. D.C. Koningsberger, R. Prins, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES (Wiley, New York, 1988), p. 673

    Google Scholar 

  43. Z. Liu, K. Handa, K. Kaibuchi, Y. Tanaka, J. Kawai, J. Electron. Spectrosc. 135, 155 (2004)

    Google Scholar 

  44. A. Bootchanont, S. Rujirawat, R. Yimnirun, R. Guo, A. Bhalla, Ceram. Int. 42, 8151 (2016)

    Google Scholar 

  45. B.N. Lin, Y.X. Lin, Y.Y. Hsu, J.D. Liao, W.H. Cheng, J.F. Lee, L.Y. Jang, H.C. Ku, J. Low. Temp. Phys. 131, 803 (2003)

    ADS  Google Scholar 

  46. I. Piñera, C.M. Cruz, Y. Abreu, A. Leyva, Phys. Status. Solidi. A 204, 2279 (2007)

    ADS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Research Council of Thailand (NRCT) and Thailand Science Research and Innovation (TSRI). Partial supports from the Physics and Astronomy Research Center, the Center of Excellence in Advanced Materials for Printed Electronics and Sensors (CMU-NECTEC), Center of Excellence in Materials Science and Technology, Faculty of Science, the Graduate School, Chiang Mai University, and Takpittayakhom School are also acknowledged. Authors would also like to thank Beamline 8 (BL8) Staff at Synchrotron Light Research Institute (SLRI) for XANES measurement. P. Prayoonphokkharat would also like to thank the financial support from the TRF through the Royal Golden Jubilee Ph.D. Program (PhD 0106/2560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anucha Watcharapasorn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prayoonphokkharat, P., Amonpattaratkit, P. & Watcharapasorn, A. Crystal structure and XANES study of Sn-substituted YBa2Cu3O7-y powder prepared by solid-state synthesis method. Appl. Phys. A 126, 140 (2020). https://doi.org/10.1007/s00339-020-3330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3330-1

Keywords

Navigation