Skip to main content
Log in

Morphology-dependent room temperature NO2 detection of CuO nanostructure/rGO composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To study the effect of morphologies on the gas sensing behaviour, herein, we have synthesized three different CuO nanostructures, namely CuO nanobrick, CuO hierarchical flower-like and CuO nanochain. Hydrothermal method has been used to synthesize the CuO nanobrick and CuO hierarchical flower-like morphologies, whereas wet chemical method for CuO nanochain-like morphology. The present study reveals that all the CuO nanostructures-reduced graphene oxide (rGO) composite sensors show maximum response for NO2 gas at room temperature and intermediate humidity level (~ 50%RH). Furthermore, among all studied sensors, the CuO hierarchical flower-like/rGO sensor exhibits maximum NO2 gas-sensing response. At RT, the CuO hierarchical flower-like/rGO sensor shows response of ~ 58.1% in 30 s for 20 ppm NO2 which is ~ 1.7 times of CuO nanobrick/rGO sensor and almost twice of CuO nanochain/rGO composite sensor. Moreover, the gas sensing behaviours of composite samples synthesized with different weight (wt) ratios of rGO to CuO hierarchical flower-like for NO2 gas have also been studied to find optimum weight ratio of rGO and CuO hierarchical flower-like for which best sensing performance is observed. Consequently, CuO hierarchical flower-like with 25 wt% of rGO exhibits the highest response. All sensors show good reproducibility when tested for five successive cycles of 20 ppm NO2 and outstanding selectivity for NO2 gas. Furthermore, the sensing mechanism has been discussed in this paper by considering the role of morphology. Our work suggests that morphology of CuO and adding appropriate amount of rGO are crucial factors and influence the sensing behaviour of NO2 sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.X. Li, Z. Guo, Y. Su, X.B. Jin, X.H. Tang, J.R. Huang, X.J. Huang, M.Q. Li, J.H. Liu, ACS Sensors 2, 102 (2017)

    Google Scholar 

  2. L. Zhu, Y. Li, W. Zeng, Appl. Surf. Sci. 427, 281 (2018)

    ADS  Google Scholar 

  3. N. Xie, L. Guo, F. Chen, X. Kou, C. Wang, J. Ma, Y. Sun, F. Liu, X. Liang, Y. Gao, X. Yan, G. Lu, Sensors Actuators B Chem. 271, 44 (2018)

    Google Scholar 

  4. S.R. Gawali, V.L. Patil, V.G. Deonikar, S.S. Patil, D.R. Patil, P.S. Patil, J. Pant, J. Phys. Chem. Solids 114, 28 (2018)

    ADS  Google Scholar 

  5. H. Ma, L. Yu, X. Yuan, Y. Li, C. Li, M. Yin, X. Fan, J. Alloys Compd. 782, 1121 (2019)

    Google Scholar 

  6. T. Lin, X. Lv, S. Li, Q. Wang, Sensors (Switzerland) 17, 1 (2017)

    Google Scholar 

  7. Y.V. Kaneti, Z. Zhang, J. Yue, Q.M.D. Zakaria, C. Chen, X. Jiang, A. Yu, Phys. Chem. Chem. Phys. 16, 11471 (2014)

    Google Scholar 

  8. K. Diao, M. Zhou, J. Zhang, Y. Tang, S. Wang, X. Cui, Sensors Actuators. B Chem. 219, 30 (2015)

    Google Scholar 

  9. P. Long, N. Duc, T. Thai, H. Thai, C.M. Hung, D.T.T. Le, N. Van Hieu, Sensors Actuators B. Chem. 270, 158 (2018)

    Google Scholar 

  10. R. Godbole, V.P. Godbole, S. Bhagwat, Mater. Sci. Semicond. Process. 63, 212 (2017)

    Google Scholar 

  11. L.Y. Jian, H.Y. Lee, C.T. Lee, J. Electron. Mater. 48, 2391 (2019)

    ADS  Google Scholar 

  12. X. Tong, W. Shen, X. Chen, J.P. Corriou, Ceram. Int. 43, 14200 (2017)

    Google Scholar 

  13. Y.H. Navale, S.T. Navale, M. Galluzzi, F.J. Stadler, A.K. Debnath, N.S. Ramgir, S.C. Gadkari, S.K. Gupta, D.K. Aswal, V.B. Patil, J. Alloy. Compd. 708, 456 (2017)

    Google Scholar 

  14. B. Zhang, M. Cheng, G. Liu, Y. Gao, L. Zhao, S. Li, Y. Wang, F. Liu, X. Liang, T. Zhang, G. Lu, Sensors Actuators. B Chem. 263, 387 (2018)

    Google Scholar 

  15. A. Gurlo, Nanoscale 3, 154 (2011)

    ADS  Google Scholar 

  16. Y. Li, D. Deng, N. Chen, X. Xing, X. Liu, X. Xiao, Y. Wang, J. Alloy. Compd 710, 216 (2017)

    Google Scholar 

  17. Y. Wang, J. Liu, X. Cui, Y. Gao, J. Ma, Y. Sun, P. Sun, F. Liu, X. Liang, T. Zhang, G. Lu, Sensors Actuators B. Chem. 238, 473 (2017)

    Google Scholar 

  18. P.S. Kolhe, A.B. Shinde, S.G. Kulkarni, N. Maiti, P.M. Koinkar, K.M. Sonawane, J. Alloys Compd. 748, 6 (2018)

    Google Scholar 

  19. M. Donarelli, R. Milan, F. Rigoni, G. Drera, L. Sangaletti, A. Ponzoni, C. Baratto, Sensors Actuators B. Chem. 273, 1237 (2018)

    Google Scholar 

  20. Q. Zhou, W. Zeng, Phys. E Low-Dimensional Syst. Nanostructures 95, 121 (2018)

    ADS  Google Scholar 

  21. D.N. Oosthuizen, D.E. Motaung, H.C. Swart, Appl. Surf. Sci. 466, 545 (2019)

    ADS  Google Scholar 

  22. L. Hou, C. Zhang, L. Li, C. Du, X. Li, X.F. Kang, W. Chen, Talanta 188, 41 (2018)

    Google Scholar 

  23. J. Tan, M. Dun, L. Li, J. Zhao, X. Li, Y. Hu, G. Huang, W. Tan, X. Huang, Sensors Actuators. B Chem. 252, 1 (2017)

    Google Scholar 

  24. A. Umar, A.A. Alshahrani, H. Algarni, R. Kumar, Sensors Actuators B. Chem. 250, 24 (2017)

    Google Scholar 

  25. U.T. Nakate, G. Hee, R. Ahmad, P. Patil, Y. Hahn, Y.T. Yu, E. Suh, Int. J. Hydrogen Energy 43, 22705 (2018)

    Google Scholar 

  26. Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang, M. Grundmann, X. Liu, Y. Fu, Mater. Horiz. 6, 470 (2019)

    Google Scholar 

  27. J. Lu, N. Jia, L. Cheng, K. Liang, J. Huang, J. Li, J. Alloys Compd. 739, 227 (2018)

    Google Scholar 

  28. C. Zhao, H. Gong, W. Lan, R. Ramachandran, H. Xu, S. Liu, F. Wang, Sensors Actuators. B Chem. 258, 492 (2018)

    Google Scholar 

  29. B. Zhang, J. Liu, X. Cui, Y. Wang, Y. Gao, P. Sun, F. Liu, K. Shimanoe, N. Yamazoe, G. Lu, Sensors Actuators. B Chem. 241, 904 (2017)

    Google Scholar 

  30. J. Liu, S. Li, B. Zhang, Y. Wang, Y. Gao, X. Liang, Y. Wang, G. Lu, J. Colloid Interface Sci. 504, 206 (2017)

    ADS  Google Scholar 

  31. H. Lee, Y. Heish, C. Lee, J. Alloys Compd. 773, 950 (2019)

    Google Scholar 

  32. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    ADS  Google Scholar 

  33. W. Cai, Y. Zhu, X. Li, R.D. Piner, R.S. Ruoff, Appl. Phys. Lett. 95, 3 (2009)

    Google Scholar 

  34. C. Yan, H. Lu, J. Gao, Y. Zhang, Q. Guo, H. Ding, Y. Wang, F. Wei, G. Zhu, Z. Yang, C. Wang, J. Alloys Compd. 741, 908 (2018)

    Google Scholar 

  35. B. Zhang, G. Liu, M. Cheng, Y. Gao, L. Zhao, S. Li, F. Liu, X. Yan, T. Zhang, P. Sun, G. Lu, Sensors Actuators B. Chem. 261, 252 (2018)

    Google Scholar 

  36. A.S.M.I. Uddin, G.S. Chung, Sensors Actuators. B Chem. 205, 338 (2014)

    Google Scholar 

  37. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)

    Google Scholar 

  38. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007)

    Google Scholar 

  39. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Carbon N. Y. 45, 1558 (2007)

    Google Scholar 

  40. H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, Sensors Actuators. B Chem. 190, 472 (2014)

    Google Scholar 

  41. Y. Peng, J. Ye, L. Zheng, K. Zou, RSC Adv. 6, 24880 (2016)

    Google Scholar 

  42. W. Zhang, M. Hu, X. Liu, Y. Wei, N. Li, Y. Qin, J. Alloy. Compd. 679, 391 (2016)

    Google Scholar 

  43. Y. Rim, Y. Yoon, K. Soon, J. Hun, Y. Shim, Y. Hoo, H. Jung, J. Lee, C. Rae, S. Young, H. Won, Carbon N. Y. 91, 178 (2015)

    Google Scholar 

  44. Jyoti, G.D. Varma, A.K. Srivastava, J. Mater. Sci.: Mater. Electron. 29, 10640 (2018)

    Google Scholar 

  45. M. Shaik, V.K. Rao, M. Gupta, K.S.R.C. Murthy, R. Jain, RSC Adv. 6, 1527 (2016)

    Google Scholar 

  46. F. Yao, D.L. Duong, S.C. Lim, S.B. Yang, H.R. Hwang, W.J. Yu, I.H. Lee, F. Güneş, Y.H. Lee, J. Mater. Chem. 21, 4502 (2011)

    Google Scholar 

  47. H. Xu, J. Zhang, A. Ur, L. Gong, K. Kan, L. Li, Appl. Surf. Sci. 412, 230 (2017)

    ADS  Google Scholar 

  48. Z. Li, Y. Liu, D. Guo, J. Guo, Y. Su, Sensors Actuators B. Chem. 271, 306 (2018)

    Google Scholar 

  49. D.P. Volanti, A.A. Felix, M.O. Orlandi, G. Whitfi, D. Yang, E. Longo, H.L. Tuller, J.A. Varela, Adv. Funct. Mater. 23, 1759 (2013)

    Google Scholar 

  50. S. Bhuvaneshwari, N. Gopalakrishnan, J. Colloid Interface Sci. 480, 76 (2016)

    ADS  Google Scholar 

  51. N. Barsan, C. Simion, T. Heine, S. Pokhrel, U. Weimar, J. Electroceramics 25, 11 (2010)

    Google Scholar 

  52. C. Zhao, J. Fu, Z. Zhang, E. Xie, RSC Adv. 3, 4018 (2013)

    Google Scholar 

  53. J. Yoon, H. Kim, H. Jeong, J. Lee, Sensors Actuators B. Chem. 202, 263 (2014)

    Google Scholar 

Download references

Acknowledgements

The author Jyoti is thankful to MHRD (Government of India) for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Varma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyoti, Varma, G.D. Morphology-dependent room temperature NO2 detection of CuO nanostructure/rGO composites. Appl. Phys. A 126, 143 (2020). https://doi.org/10.1007/s00339-020-3319-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3319-9

Keywords

Navigation