Skip to main content
Log in

Development model and experimental characterization of residual stress of 3D printing PLA parts with porous structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Porous structural materials are widely adopted in medical field owing to their excellent mechanical and physical properties. The 3D printing technology offers new opportunities for the preparation of porous structures. However, during 3D printing of porous structure, continuous rapid heating and cooling cycles lead to residual stress. Severe quality defects including cracks, warpage, and deformation caused by the residual stress have remained to be a problem. In this study, a development model of residual stress with porous structure was established using fused deposition molding (FDM), and the residual stress was found to have a linear correlation with stress concentration coefficient. Samples with different pass and aperture sizes were fabricated by FDM. The residual stresses developed on the surface of samples were evaluated by Raman spectroscopy. The relationship between pore size and surface residual stress was obtained, indicating that the variation in surface residual stress is consistent with stress concentration coefficient with the increase in pore size. Based on above results, the accuracy of theoretical modeling was confirmed. This development model of residual stress has guiding paramount for 3D printing porous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.N. Carter, O. Addison, N. Naji, P. Seres, A.H. Wilman, D.E.T. Shepherd, L. Grover, S. Cox, Acta Biomater. 107, 338 (2020)

    Article  Google Scholar 

  2. S.F.S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H.S.C. Metselaar, N. Adib Kadri, N.A.A. Osman, Sci. Technol. Adv. Mater. 16, 033502 (2015)

    Article  Google Scholar 

  3. M. Fattahi, M. Rostami, F. Amirkhanlu, N. Arabian, E. Ahmadi, H. Moayedi, Diam. Relat. Mater. 99, 107518 (2019)

    Article  ADS  Google Scholar 

  4. A.H. Nickel, D.M. Barnett, F.B. Prinz, Mater. Sci. Eng. A 317, 59 (2001)

    Article  Google Scholar 

  5. C. Kousiatza, D. Karalekas, Mater. Des. 97, 400 (2016)

    Article  Google Scholar 

  6. C. Kousiatza, N. Chatzidai, D. Karalekas, Sensors (Switzerland) 17, 456 (2017)

    Article  Google Scholar 

  7. B. Vrancken, V. Cain, R. Knutsen, J. Van Humbeeck, Scr. Mater. 87, 29 (2014)

    Article  Google Scholar 

  8. L. Wang, X. Jiang, Y. Zhu, X. Zhu, J. Sun, B. Yan, Int. J. Adv. Manuf. Technol. 97, 3535 (2018)

    Article  Google Scholar 

  9. Y. Zhang, K. Chou, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 222, 959 (2008)

    Article  Google Scholar 

  10. M. Kaveh, M. Badrossamay, E. Foroozmehr, A. Hemasian Etefagh, J. Mater. Process. Technol. 226, 280 (2015)

    Article  Google Scholar 

  11. T. Mukherjee, V. Manvatkar, A. De, T. DebRoy, Scr. Mater. 127, 79 (2017)

    Article  Google Scholar 

  12. W.L. Wang, C.M. Cheah, J.Y.H. Fuh, L. Lu, Mater. Des. 17, 205 (1996)

    Article  Google Scholar 

  13. T.B.F. Woodfield, J. Malda, J. De Wijn, F. Péters, J. Riesle, C.A. Van Blitterswijk, Biomaterials 25, 4149 (2004)

    Article  Google Scholar 

  14. J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Biomaterials 26, 4817 (2005)

    Article  Google Scholar 

  15. C. Zhou, K. Yang, K. Wang, X. Pei, Z. Dong, Y. Hong, X. Zhang, Mater. Des. 109, 415 (2016)

    Article  Google Scholar 

  16. M. Asadi-Eydivand, M. Solati-Hashjin, A. Farzad, N.A. Abu Osman, Robot. Comput. Integr. Manuf. 37, 57 (2016)

    Article  Google Scholar 

  17. M.F. Zaeh, G. Branner, Prod. Eng. 4, 35 (2010)

    Article  Google Scholar 

  18. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, G.I. Prokopenko, Surf. Coatings Technol. 381, 125136 (2020)

    Article  Google Scholar 

  19. W. Zhang, A.S. Wu, J. Sun, Z. Quan, B. Gu, B. Sun, C. Cotton, D. Heider, T.W. Chou, Compos. Sci. Technol. 150, 102 (2017)

    Article  Google Scholar 

  20. L. Mugwagwa, D. Dimitrov, S. Matope, I. Yadroitsev, Int. J. Adv. Manuf. Technol. 102, 2441 (2019)

    Article  Google Scholar 

  21. A. Kantaros, D. Karalekas, Mater. Des. 50, 44 (2013)

    Article  Google Scholar 

  22. C. Casavola, A. Cazzato, V. Moramarco, G. Pappalettera, Polym. Test. 58, 249 (2017)

    Article  Google Scholar 

  23. H. Ali, H. Ghadbeigi, K. Mumtaz, Int. J. Adv. Manuf. Technol. 97, 2621 (2018)

    Article  Google Scholar 

  24. I.A. Alhomoudi, G. Newaz, Thin Solid Films 517, 4372 (2009)

    Article  ADS  Google Scholar 

  25. S.H. Margueron, P. Bourson, S. Gautier, A. Soltani, D. Troadec, J.C. De Jaeger, A.A. Sirenko, A. Ougazzaden, J. Cryst. Growth 310, 5321 (2008)

    Article  ADS  Google Scholar 

  26. M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, F. Abe, CIRP Ann. - Manuf. Technol. 53, 195 (2004)

    Article  Google Scholar 

  27. X.W.Shen, Zhejiang University (2018)

  28. Science and Technology Committee of Ministry of aviation industry. In: Handbook of stress concentration factors (1990)

  29. K. Kollins, C. Przybyla, M.S. Amer, J. Eur. Ceram. Soc. 38, 2784 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Natural Science Foundation of Shandong Provincial, China (Grant No. ZR2017MEE052; No. ZR2018ZB0105) and the Shandong Provincial Key Research and Development Program (Grant No. 2019JZZY010441). Thanks for all the former researches contributed to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoliang Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Jiang, Z., Zhang, C. et al. Development model and experimental characterization of residual stress of 3D printing PLA parts with porous structure. Appl. Phys. A 127, 98 (2021). https://doi.org/10.1007/s00339-020-04238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04238-2

Keywords

Navigation