Skip to main content

Advertisement

Log in

Enhanced electrocatalytic activity of CuO-SnO2 nanocomposite in alkaline medium

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The development of low cost, long-term stable and highly efficient electrocatalyst is one of the major current research activities towards electrochemical water oxidation process for the clean-energy hydrogen production. The transition metal oxides (CuO, TiO2, NiO, Co2O3, etc.,) have been desirable for the oxygen evolution reaction (OER) in alkaline electrolyte. Among these transition metal oxides, the CuO based composites are most promising constituents for the water oxidation process due to their good electronic properties and the anticipated synergistic effect to alter the surface properties of the materials dramatically to favor the electrocatalysis. Here, we have reported the synthesis of CuO-SnO2 nanoparticles network by a facile chemical method as the electrocatalyst for an efficient OER. The physiochemical properties of CuO-SnO2 nanoparticles network electrocatalyst were characterized by using various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopies (XPS) and transmission electron microscopy (TEM) for their structural, absorption/presence of functional groups, elemental composition and morphology, respectively. Further, the electrochemical properties of the catalysts were investigated using cyclic voltammetry (CV), chronopotentiometry and Tafel curve measurements in alkaline electrolyte. The electrocatalysts showed a low onset potential of 1.39 V vs reversible hydrogen electrode (RHE) and high stability for 6 h in 1.0 M KOH electrolyte, which demonstrated their better performance than the benchmark Ni electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017)

    Article  ADS  Google Scholar 

  2. L. Peng, Z. Wei, Catalyst engineering for electrochemical energy conversion from water to water: water electrolysis and the hydrogen fuel cell. Engineering 6, 653–679 (2020)

    Article  Google Scholar 

  3. R.D.L. Smith, M.S. Prévot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K.J. Siu, S. Trudel, C.P. Berlinguette, Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60–63 (2013)

    Article  ADS  Google Scholar 

  4. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010)

    Article  Google Scholar 

  5. L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014)

    Article  Google Scholar 

  6. J.A. Koza, Z. He, A.S. Miller, J.A. Switze, Electrodeposition of crystalline Co3O4-A catalyst for the oxygen evolution reaction. Chem. Mater. 24, 3567–3573 (2012)

    Article  Google Scholar 

  7. J. Tian, Q. Liu, A.M. Asiri, X. Sun, Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 136, 7587–7590 (2014)

    Article  Google Scholar 

  8. H.W. Park, D.U. Lee, P. Zamani, M.H. Seo, L.F. Nazar, Z. Chen, Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy 10, 192–200 (2014)

    Article  Google Scholar 

  9. J.A. Haber, Y. Cai, S. Jung, C. Xiang, S. Mitrovic, J. Jin, A.T. Bellbd, J.M. Gregoire, Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy. Environ. Sci. 7, 682–688 (2014)

    Article  Google Scholar 

  10. J.A. Haber, E. Anzenburg, J. Yano, C. Kisielowski, J.M. Gregoire, Multiphase nanostructure of a quinary metal oxide electrocatalyst reveals a new direction for OER electrocatalyst design. Adv. Energy Mater. 5, 1402307–1402317 (2015)

    Article  Google Scholar 

  11. Kumar MP, Murugadoss G, Kumar MR (2020) Synthesis and characterization of CuO–NiO nanocomposite: highly active electrocatalyst for oxygen evolution reaction application.J. Mater. Sci.: Mater. In Electronics 31:11286–11294

  12. L. Trotochaud, J.K. Ranney, K.N. Williams, S.W. Boettcher, Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253–17261 (2012)

    Article  Google Scholar 

  13. R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M. Markovic, Trends in activity for the water electrolyser reactions on 3 d M (Ni Co, Fe, Mn) hydr (oxy) oxide catalysts. Nat. Mater. 11, 550–557 (2012)

    Article  ADS  Google Scholar 

  14. W. Zhou, X. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, H. Zhang, Ni3S2nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 6, 2921–2924 (2013)

    Article  Google Scholar 

  15. F. Song, X. Hu, Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 136, 16481–16484 (2014)

    Article  Google Scholar 

  16. X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, S. Yang, A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem Int. Ed. 53, 7584–7588 (2014)

    Article  Google Scholar 

  17. T. Ma, S. Dai, M. Jaroniec, S. Qiao, Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136, 13925–13931 (2014)

    Article  Google Scholar 

  18. H. Wang, H.W. Lee, Y. Deng, Z. Lu, P.C. Hsu, Y. Liu, D. Lin, Y. Cui, Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Comm. 6, 7261–7268 (2015)

    Article  ADS  Google Scholar 

  19. J. Kundu, S. Khilari, K. Bhunia, D. Pradhan, Ni-doped CuS as an efficient electrocatalyst for the oxygen evolution reaction. Catal. Sci. Technol. 9, 406–417 (2019)

    Article  Google Scholar 

  20. R. Hutchings, K. Müller, S. Stucki, A structural investigation of stabilized oxygen evolution catalysts. J. Mater. Sci. 19, 3987–3994 (1984)

    Article  ADS  Google Scholar 

  21. M.S. Park, Y.M. Kang, G.X. Wang, S.X. Dou, H.K. Liu, The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 18, 455–461 (2008)

    Article  Google Scholar 

  22. F. Han, W.C. Li, M.R. Li, A.H. Lu, Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. J Mater Chem. 22, 9645–9651 (2012)

    Article  Google Scholar 

  23. J. Deng, C. Yan, L. Yang, S. Baunack, S. Oswald, H. Wendrock, Sandwich-stacked SnO2/Cu hybrid nanosheets as multichannel anodes for lithium ion batteries. ACS Nano 7, 6948–6954 (2013)

    Article  Google Scholar 

  24. X. Wang, Z. Li, Q. Li, C. Wang, A. Chen, Z. Zhang, R.L. FanYin, Ordered mesoporous SnO2 with a highly crystalline state as an anode material for lithium ion batteries with enhanced electrochemical performance. CrystEngComm 15, 3696–3704 (2013)

    Article  Google Scholar 

  25. Joshi S, Satyanarayana L, Manjula P, Sunkara MV, Ippolito SJ (2015) Chemo-Resistive CO2 gas sensor based on CuO-SnO2 heterojunction nanocomposite material. ISPTS 2015 - 2nd International Symposium on Physics and Technology of Sensors: Dive Deep into Sensors, Proceedings, art. no. 7220079:43–48.

  26. G.Z. Xing, Y. Wang, J.I. Wong, Y.M. Shi, Z.X. Huang, S. Li, H.Y. Yang, Hybrid CuO/SnO2 nanocomposites: Towards cost-effective and high performance binder free lithium ion batteries anode materials. Appl. Phys. Lett. 105, 143905–143910 (2014)

    Article  ADS  Google Scholar 

  27. S. Singh, N. Verma, A. Singh, B.C. Yadav, Synthesis and characterization of CuO-SnO2 nanocomposite and its application as liquefied petroleum gas sensor. Mater. Sci. Semicond. Process. 18, 88–96 (2014)

    Article  Google Scholar 

  28. S.W. Choi, A. Katoch, J. Zhang, S.S. Kim, Electrospun nanofibers of CuO-SnO2 nanocomposite as semiconductor gas sensors for H2S detection. Sens. Actuators, B: Chem. 176, 585–591 (2013)

    Article  Google Scholar 

  29. X. Hl, H.S. Zhuang, T. Zhang, D.C. Xiao, Photocatalytic degradation of Acid Blue 62 over CuO-SnO2 nanocomposite photocatalyst under simulated sunlight. J. Environ. Sci. 19, 1141–1145 (2007)

    Article  Google Scholar 

  30. S. Sundar, G. Venkatachalam, S.J. Kwon, Biosynthesis of copper oxide (CuO) nanowires and their use for the electrochemical sensing of dopamine. Nanomaterials 8, 823–839 (2018)

    Article  Google Scholar 

  31. A. Majid, J. Tunney, S. Argue, D. Kingston, M. Post, J. Margeson, G.J. Gardner, Characterization of CuO phase in SnO2–CuO prepared by the modified Pechini method. J. Sol-Gel Sci. Technol. 53, 390–398 (2010)

    Article  Google Scholar 

  32. V. Maruthapandian, T. Pandiarajan, V. Saraswathy, S. Muralidharan, Oxygen evolution catalytic behaviour of Ni doped Mn3O4 in alkaline medium. RSC Adv. 6, 48995–49002 (2016)

    Article  ADS  Google Scholar 

  33. R.P. Putra, H. Horino, I.I. Rzeznicka, An efficient electrocatalyst for oxygen evolution reaction in alkaline solutions derived from a copper chelate polymer via in situ electrochemical transformation. Catalysts 10, 233–243 (2020)

    Article  Google Scholar 

  34. J.K. Wu, C.T. He, G.R. Li, J.P. Zhang, Inorganic-MOF-inorganic approach to ultrathin CuO decorated Cu-C hybrid nanorod arrays for efficient oxygen evolution reaction. J. Mater. Chem. A. 6, 19176–19181 (2018)

    Article  Google Scholar 

  35. B. Zhang, C. Li, G. Yang, K. Huang, J. Wu, Z. Li, X. Cao, D. Peng, S. Hao, Y. Huang, nanostructured CuO/C hollow shell@3D copper dendrites as a highly efficient electrocatalyst for oxygen evolution reaction. ACS Appl. Mater. Interfaces. 10, 23807–23812 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Murugadoss.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.P., Murugadoss, G., Mangalaraja, R.V. et al. Enhanced electrocatalytic activity of CuO-SnO2 nanocomposite in alkaline medium. Appl. Phys. A 127, 66 (2021). https://doi.org/10.1007/s00339-020-04228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04228-4

Keywords

Navigation