Skip to main content
Log in

A robust enzymeless glucose sensor based on tin nickel sulfide nanocomposite modified electrodes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tin-nickel sulfide nanocomposite deposited on nickel foam (TNS/NF) displays high electrocatalytic activity toward glucose oxidation. As an enzymeless glucose sensor, the TNS/NF sensing electrode shows a linear range of response from 3 to 5 mM, with a low detection limit of 0.18 μM signal-to-noise ratio of 3 and high sensitivity of 1622.9 μA mM−1 cm−2. In addition, the proposed sensing electrode shows a fast response time of less than 2 s on glucose addition. The resulting biosensor has high selectivity, excellent reproducibility, and long-term stability for glucose detection. It should be a worthy note; the TNS/NF could be successfully applied in determining glucose in a real blood sample at an applied voltage of 0.5 V.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Koschinsky, L. Heinemann, Diabetes. Metab. Res. Rev. 17, 113 (2001)

    Google Scholar 

  2. C.M. Wong, K.H. Wong, X.D. Chen, Appl. Microbiol. Biotechnol. 78, 927 (2008)

    Article  Google Scholar 

  3. E. Wilkins, P. Atanasov, Med. Eng. Phys. 18, 273 (1996)

    Article  Google Scholar 

  4. X. Wang, H. Chen, T. Zhou, Z. Lin, J. Zeng, Z. Xie, X. Chen, K. Wong, G. Chen, X. Wang, Biosens. Bioelectron. 24, 3702 (2009)

    Article  Google Scholar 

  5. O. Lyandres, J.M. Yuen, N.C. Shah, R.P. VanDuyne, J.T. Walsh, M.R. Glucksberg, Diabetes Technol. Ther. 10, 257 (2008)

    Article  Google Scholar 

  6. D. Feng, F. Wang, Z. Chen, Sens. Actuators B Chem. 138, 539 (2009)

    Article  Google Scholar 

  7. H.V. Hsieh, Z.A. Pfeiffer, T.J. Amiss, D.B. Sherman, J.B. Pitner, Biosens. Bioelectron. 19, 653 (2004)

    Article  Google Scholar 

  8. J. Wang, Chem. Rev. 108, 814 (2008)

    Article  Google Scholar 

  9. Y. Liu, M. Wang, F. Zhao, Z. Xu, S. Dong, Biosens. Bioelectron. 21, 984 (2005)

    Article  Google Scholar 

  10. R. Wilson, A.P.F. Turner, Biosens. Bioelectron. 7, 165 (1992)

    Article  Google Scholar 

  11. G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Microchim. Acta 180, 161 (2013)

    Article  Google Scholar 

  12. S. Park, H. Boo, T.D. Chung, Anal. Chim. Acta 556, 46 (2006)

    Article  Google Scholar 

  13. N.I. Chandrasekaran, M. Matheswaran, ACS Omega 5, 23502 (2020)

    Article  Google Scholar 

  14. N.I. Chandrasekaran, M. Manickam, Sens. Actuators B Chem. Actuators B. Chem. 288, 188–194 (2019)

    Article  Google Scholar 

  15. N.I. Chandrasekaran, M. Matheswaran, Asia-Pacific J. Chem. Eng. 15, e2525 (2020)

    Google Scholar 

  16. M.-R. Gao, Y.-F. Xu, J. Jiang, S.-H. Yu, Chem. Soc. Rev. 42, 2986 (2013)

    Article  Google Scholar 

  17. P.K. Kannan, C.S. Rout, Chem. A Eur. J. 21, 9355 (2015)

    Article  Google Scholar 

  18. S. Kim, S.H. Lee, M. Cho, Y. Lee, Biosens. Bioelectron. 85, 587 (2016)

    Article  Google Scholar 

  19. H. Huo, Y. Zhao, C. Xu, J. Mater. Chem. A 2, 15111 (2014)

    Article  Google Scholar 

  20. Z. Yang, Y. Ren, Y. Zhang, J. Li, H. Li, X.H.X. Hu, Q. Xu, Biosens. Bioelectron. 26, 4337 (2011)

    Article  Google Scholar 

  21. J. Li, Z. Yang, Y. Tang, Y. Zhang, X. Hu, Biosens. Bioelectron. 41, 698 (2013)

    Article  Google Scholar 

  22. G. Li, H. Huo, C. Xu, J. Mater. Chem. A 3, 4922 (2015)

    Article  Google Scholar 

  23. J. Huang, Y. He, J. Jin, Y. Li, Z. Dong, R. Li, Electrochim. Acta 136, 41 (2014)

    Article  Google Scholar 

  24. N.I. Chandrasekaran, H. Muthukumar, A.D. Sekar, A. Pugazhendhi, M. Manickam, J. Mol. Liq. 266, 649 (2018)

    Article  Google Scholar 

  25. H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Nanoscale 5, 8879 (2013)

    Article  ADS  Google Scholar 

  26. C. Wei, C. Cheng, J. Zhao, Y. Wang, Y. Cheng, Y. Xu, W. Du, H. Pang, Chem. Asian J. 10, 679 (2015)

    Article  Google Scholar 

  27. W. Wu, B. Yu, H. Wu, S. Wang, Q. Xia, Y. Ding, Mater. Sci. Eng. C 70, 430 (2017)

    Article  Google Scholar 

  28. X. Cao, K. Wang, G. Du, A.M. Asiri, Y. Ma, Q. Lu, X. Sun, J. Mater. Chem. B 4, 7540 (2016)

    Article  Google Scholar 

  29. P. Qu, Z. Gong, H. Cheng, W. Xiong, X. Wu, P. Pei, R. Zhao, Y. Zeng, Z. Zhu, RSC Adv. 5, 106661 (2015)

    Article  ADS  Google Scholar 

  30. C. Wei, C. Cheng, Y. Cheng, Y. Wang, Y. Xu, W. Du, H. Pang, Dalt. Trans. 44, 17278 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to NIT Tiruchirappalli and MHRD for providing fellowship under the HTRA category. We are also thankful to SERB-DST under National Post-Doctoral Fellowship (SO. No: PDF/2019/001723) for financial support. The authors would like to acknowledge SAIF-IIT Madras for characterization studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manickam Matheswaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

339_2020_4163_MOESM1_ESM.docx

Supporting information Description of material characterization, TEM micrographs, XPS survey spectrum with high-resolution spectra of Sn 3d, Ni 2p and S 2p spectrum, FTIR spectrum, and N2 sorption isotherm with pore size distribution curve of TNS nanostructure. Chronoamperometry response and a calibration curve of peak current vs. glucose concentration for a wide range of glucose concentration are provided in the supporting information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekaran, N.I., Harshiny, M., Thangasamy, P. et al. A robust enzymeless glucose sensor based on tin nickel sulfide nanocomposite modified electrodes. Appl. Phys. A 127, 20 (2021). https://doi.org/10.1007/s00339-020-04163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04163-4

Keywords

Navigation