Skip to main content
Log in

Effect of Nd on structural, optical and magnetic behaviour of TiO2 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nd-doped TiO2 nanoparticles of different concentration are synthesized using a wet chemical route, followed by structural, optical and magnetic property examination. X-ray diffraction of the Nd-doped samples exhibits a tetragonal type anatase crystal structure similar to that of the pure TiO2. Crystallite size and strain of the nanoparticles are calculated by Scherrer’s and Williamson–Hall equation. FTIR shows the existence of functional groups at the conjunction of TiO2 nanoparticles and thereby confirming strong chemical bonding. Microstructural investigation of the prepared samples by FESEM and HRTEM shows the presence of nano-sized irregular spherical-shaped particles. The presence of defects and vacancies is observed by multicolour PL emission spectra. Further, availability of unpaired electrons and paramagnetic centres of Nd-doped samples is been identified by EPR spectra. The magnetic analysis reveals that pure TiO2 show weak ferromagnetic behaviour, whereas the Nd-doped TiO2 samples exhibit unsaturated ferromagnetic behaviour at high field, which delivers the interesting interaction between dopant and host lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Vijayaprasath, R. Murugan, T. Mahalingam, Y. Hayakawa, G. Ravi, Ceram. Int. 41, 10607 (2015)

    Google Scholar 

  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    ADS  Google Scholar 

  3. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    ADS  Google Scholar 

  4. Y. Matsumoto, M. Murakami, S. Tomoji, T. Hasegawa, T. Fukumra, M. Kawasaki, P. Ahmet, C. Toyohiro, S.Y. Koshihara, H. Koinuma, Science 291, 854 (2001)

    ADS  Google Scholar 

  5. S. Batakrushna, P.K. Giri, D. Soumen, I. Kenji, F. Minoru, J. Phys. D 47, 235304 (2014)

    Google Scholar 

  6. S. Naseem, W. Khan, S. Khan, S. Husain, A. Ahmad, J. Magn. Magn. Mater. 447, 155 (2018)

    ADS  Google Scholar 

  7. S. Sudesh, C. Sujeet, K.C. Subhash, K.S. Shiv, J. Appl. Phys. 109, 0839057 (2011)

    Google Scholar 

  8. B. Choudhury, M. Dey, A. Choudhury, Int. Nano. Lett. 25, 2 (2013)

    Google Scholar 

  9. X. Lu, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, Adv. Funct. Mater. 20, 509 (2010)

    ADS  Google Scholar 

  10. L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, L. Fedorenko, V. Kshnyakin, J. Lumin. 166, 253 (2015)

    Google Scholar 

  11. M. Manzoor, A. Rafiq, M. Ikram, M. Nafees, S. Ali, Int. Nano. Lett. 8, 1 (2018)

    Google Scholar 

  12. G. Vijayaprasath, R. Murugan, Y. Hayakawa, G. Ravi, J. Lumin. 178, 375 (2016)

    Google Scholar 

  13. N. Rezlesu, E. Rezlescu, C. Pasnicu, M.L. Craus, J. Phys, Condens. Matter 6(29), 5707 (1994)

    ADS  Google Scholar 

  14. L.-T. Tseng, Xi. Luo, S. Li, J. Yi, J. Alloys Compd. 687, 294 (2016)

    Google Scholar 

  15. S. Paul, B. Choudhury, A. Choudhury, J. Alloys Compd. 601, 201 (2014)

    Google Scholar 

  16. R. Adhikari, A.K. Das, D. Karmakar, J. Ghatak, J. Magn. Magn. Mater. 322, 3631 (2010)

    ADS  Google Scholar 

  17. T.L.R. Hewer, E.C.C. Souza, T.S. Martins, E.N.S. Muccillo, R.S. Freire, J. Mol. Catal A 336, 58 (2011)

    Google Scholar 

  18. P. Bushra, H. Mahmood-ul, K. Zeeshan, R. Saira, N. Shahzad, J. Appl. Res. Technol. 15, 132 (2017)

    Google Scholar 

  19. V. Stengl, S. Bakardjieva, N. Murafa, Mater. Chem. Phys. 114, 217 (2009)

    Google Scholar 

  20. R. Joanna, G. Tomasz, W.S. Janusz, L. Wojciech, G. Maria, O. Bunsho, Z. Adriana, Appl. Surf. Sci. 307, 333 (2014)

    Google Scholar 

  21. A.H. Mohammed, N.S. Fawaz, S.A. Adnan, Int. J. Appl. Innov. Eng. Manag. 2, 432 (2013)

    Google Scholar 

  22. J. Yang, J. Dai, J. Li, Appl. Surf. Sci. 257, 8965 (2011)

    ADS  Google Scholar 

  23. Wu. Du Jun, Z.S. Qi, Gu. Xin, L. Jiao, G. Haizhi, Z. Wenlong, P. Hailong, Z. Jianguo, J. Rare Earths 33, 148 (2015)

    Google Scholar 

  24. S.H. Hoda, M. Saif, J.T. McLeskey, M.S.A. Abdel-Mottaleb, I.S. Yahia, T. Story, W. Knoff, Int. J. Photoenergy (2009). https://doi.org/10.1155/2009/240402

    Article  Google Scholar 

  25. N. Nithyaa, N.V. Jaya, J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4693-9

    Article  Google Scholar 

  26. G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, J. Mater. Chem. 20, 5301 (2010)

    Google Scholar 

  27. K. Sandeep, S. Patel, S.G. Namdeo, J. Magn. Magn. Mater. 330, 21 (2013)

    ADS  Google Scholar 

  28. B. Parveen, M. Hassan, S. Atiq, S. Riaz, S. Naseem, M.A. Toseef, Prog. Nat. Sci. Mater (2017). https://doi.org/10.1016/j.pnsc.2017.04.007

    Article  Google Scholar 

  29. S. Kumar, P.D. Sahare, Mater. Res. Bull. 51, 217 (2014)

    Google Scholar 

  30. A. Zeid, A.L. Othman, Materials 5, 2874 (2012)

    ADS  Google Scholar 

  31. M. Rajendran, K.K. Mallick, A.K. Bhattacharya, Mater. Lett. 37, 10 (1998)

    Google Scholar 

  32. V. Hiremath, R. Shavi, J.G. Seo, Chem. Eng. J 308, 177 (2017)

    Google Scholar 

  33. J. Xuefeng, Y. Lu, L. Peng, L. Xi, S. Jian, Colloids Surf. B. 79, 69 (2010)

    Google Scholar 

  34. Xu. Yue-Hua, C. Chen, X.-L. Yang, X. Li, B.-F. Wang, Appl. Surf. Sci. 255, 8624 (2009)

    ADS  Google Scholar 

  35. R. Kralchevska, M. Milanova, D. Hristov, A. Pintar, D. Todorovsky, Mater. Res. Bull. 47, 2165 (2012)

    Google Scholar 

  36. Qi. Xiao, Z. Si, Yu. Zhiming, G. Qiu, Mater. Sci. Eng. B 137, 189 (2007)

    Google Scholar 

  37. G. Singh, C.S. Ravi, Ceram. Int. 43, 2350 (2017)

    Google Scholar 

  38. P. Susmita, C. Pawan, C. Biswajit, A.A. Gazi, C. Amarjyoti, J. Colloid Interface Sci. 439, 54 (2015)

    Google Scholar 

  39. K.S. Babu, A.R. Reddy, C. Sujatha, K.V. Reddy, A.N. Mallika, J. Adv. Ceram. 2, 260 (2013)

    Google Scholar 

  40. D.M. Murphy, Metal Oxide Catal. (2008). https://doi.org/10.1002/9783527626113.ch1

    Article  Google Scholar 

  41. G. Yang, D. Gao, J. Zhang, J. Zhang, Z. Shi, D. Xue, J. Phys. Chem. C 115, 16814 (2011)

    Google Scholar 

  42. T. Li-Ting, L. Xi, T.T. Thiam, L. Sean, Y. Jiabao, Nanoscale Res. Lett. 9, 1 (2014)

    ADS  Google Scholar 

  43. P.K. Chinthala, O.G. Neeruganti, C.W. Ting, W. Ming-Show, C.K. Shyue, J. Phys. Chem. B 110, 5223 (2006)

    Google Scholar 

  44. A.A. Dakhel, M. El-Hilo, J. Appl. Phys. 107, 123905 (2010)

    ADS  Google Scholar 

  45. A. Yahya, G. Ted, C. Cigdem, W. Iwamoto, P.G. Pagliuso, M. Sabee, Nanotechnology 24, 275704 (2013)

    Google Scholar 

  46. X. Qian, W. Wei-Peng, X. Zheng, Z. Peng, Li. Zheng-Cao, Z. Zheng-Jun, Chin. Phys. B. 24, 057503 (2015)

    ADS  Google Scholar 

  47. A.G. El Hachimi, H. Zaari, M. Hamedoun, A. Benyoussef, A. El Kenz, O. Mounkachi, J. Magn. Magn. Mater. 444, 416 (2017)

    ADS  Google Scholar 

  48. J.H. Zheng, J.L. Song, Z. Zhao, Q. Jiang, J.S. Lian, Cryst. Res. Technol. 47, 713 (2012)

    Google Scholar 

  49. G. Vijayaprasath, R. Murugan, S. Asaithambi, G.B. Anandha, P. Sakthivel, T. Mahalingam, Y. Hayakawa, G. Ravi, Appl. Phys. A (2016). https://doi.org/10.1007/s00339-016-9655-0

    Article  Google Scholar 

  50. B. Poornaprakash, U. Chalapathi, S. Babu, S.-H. Park, Physica E (2017). https://doi.org/10.1016/j.physe.2017.06.007

    Article  Google Scholar 

  51. M.D. Chandra, H. Khanduri, H. Kooskora, J. Subbi, I. Heinmaa, A. Mere, J. Krustok, R. Stern, Phys. Status Solidi A 209, 353–358 (2012)

    ADS  Google Scholar 

  52. S. Kumar, P.D. Sahare, J. Rare Earths 30, 761 (2012)

    Google Scholar 

  53. M. Mohammadi, N. Shahtahmasebi, M. Karimipour, R. Sarhaddi, Indian J. Sci. Technol. 5, 2912 (2012)

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge DST, New Delhi for providing financial support to carry out this research work under PURSE II scheme. One of the authors Mrs. Nithyaa. N is thankful to DST, New Delhi for the award of DST-PURSE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nithyaa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nithyaa, N., Victor Jaya, N. Effect of Nd on structural, optical and magnetic behaviour of TiO2 nanoparticles. Appl. Phys. A 127, 69 (2021). https://doi.org/10.1007/s00339-020-04140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04140-x

Keywords

Navigation