Skip to main content
Log in

Experimental and first-principles study of the origin of the magnetic properties of CoFe2O4 spinel ferrite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CoFe2O4 nanoparticles were prepared by the co-precipitation method, the structural properties were performed using X-Ray Diffraction (DRX) in the goal to prove the success of Cobalt ferrite formation and determine crystal parameters. The size and morphological study were building using Scanning Electron Microscopy (SEM). The magnetic properties were carried using MPMS SQUID device. The CoFe2O4 nanoparticles present a ferromagnetic behavior below their transition temperature and values of 3 µB of total magnetic moment were achieved under magnetic field of 5 T. Based on the full-potential linearized augmented plane wave (FP-LAPW) method, with the generalized gradient and GGA-PBE approximation, the electronic structure and local magnetic moment were calculated. This theoretical study contributed to a better understanding the role of magnetic interaction sin CoFe2O4 spinel ferrites. Moreover, the theoretical magnetic properties of CoFe2O4 show a good agreement with the experimental results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Sivakumar, S. Kanagesan, V. Umapathy, R. Suresh Babu, S. Nithiyanantham, J. Supercond. Nov. Magn. 26 725–773 (2013)

    Google Scholar 

  2. L. Kumar, M. Kar, Ceram. Inter. 38, 4771–4782 (2012)

    Google Scholar 

  3. A.T. Raghavender, N.H. Hong, J. Magnet Magnet Mater 323, 2145–2147 (2011)

    ADS  Google Scholar 

  4. P. Guo, G. Zhang, J. Yu, H. Li, X.S. Zhao, Coll. Surf. A 395, 168–174 (2012)

    Google Scholar 

  5. R.K. Kotnala, JyotiShah, Handbook. Mag. Mater. 23(2015), 291–379 (2015)

    Google Scholar 

  6. M. Pardavi-Horvath, J. Magn. Magn. Mater 215, 171–183 (2000)

    ADS  Google Scholar 

  7. R. Valenzuela, Phys. Res. Int. 2012, 591839 (2012)

    Google Scholar 

  8. T. Dippong, E.A. Levei, O. Cadar, F. Goga, D. Toloman, G. Borodi, J. Therm. Anal. Calorim. 136(4), 1587–1596 (2019)

    Google Scholar 

  9. T. Dippong, D. Toloman, E.A. Levei, O. Cadar A, Mesaros. Thermochimica. Acta. 666, 103–115 (2018)

    Google Scholar 

  10. M. Grigorova, H.J. Blythe, V. Blaskov, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, L.M. Martinez, J.S. Mun oz, M. Mikhov, J. Magn. Magn. Mater. 183, 183–163 (1998)

    ADS  Google Scholar 

  11. H. Shenker, Phys. Rev. 107, 1246 (1957)

    ADS  Google Scholar 

  12. M.A. Ahmed, N.G. Imam, M.M. Hefny, H. R, Gomaa. J. Ceram. Sci. Technol. 7(2), 235–242 (2016)

    Google Scholar 

  13. A. Manikandan, M. Durka, S. Arul Antony, J. Supercond. Nov. Magn. 28, 209 (2015)

    Google Scholar 

  14. A. Manikandan, M. Durka, S. Arul Antony, J. Supercond. Nov. Magn. 28, 1405 (2015)

    Google Scholar 

  15. R. Lamouri, L. Fkhar, E. Salmani, O. Mounkachi, M. Hamedoun, M. Ait Ali, A. Benyoussef, H. Ez-Zahraouy, Appl. Phys. 126–325 A (2020)

  16. H.S. Mund, B.L. Ahuja, J. Mater. Res. Bull. 85, 228–233 (2017)

    Google Scholar 

  17. H. Kavas, A. Baykal, S.M.S. Toprakc, Y. Köseoglu, M. Sertkol, B. Aktas, J. Alloy. Comp. 479, 49–55 (2009)

    Google Scholar 

  18. T. Prozorov, P. Palo, L. Wang, M.N.Hamilton, D.A Jones, D. Orr, S.K.Mallapragada, B. Narasimhan, P.C. Canfield, R. Prozorov, J. Acs Nano. 1(3), 228–233 (2007)

  19. V.S. Coker, N.D. Telling, G. Van Der Laan, R.A.D. Pattrick, C.I. Pearce, E. Arenholz, F. Tuna, R.E.P. Winpenny, J.R. Lloyd, J. Acs Nano. 3(7), 1922–1928 (1922)

    Google Scholar 

  20. K. Winiarska, I. Szczygie, R. Klimkiewicz, Ind. Eng. Chem. Res. 52, 353–361 (2013)

    Google Scholar 

  21. O. Mounkachi, R. Lamouri, B. Abraime, H. Ez-Zahraouy, A. El Kenz, M. Hamedoun, A. Benyoussef, J. Ceram. Int. 43, 16 (2017)

    Google Scholar 

  22. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, G. Borodi, Ceram. Int. 44(9), 10478–10485 (2018)

    Google Scholar 

  23. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, F. Goga, G. Borodi, L. Barbu-Tudoran, Ceram. Int. 45(6), 7458–7467 (2019)

    Google Scholar 

  24. R. Lamouri, L. Fkhar, E. Salmani, O. Mounkachi, M. Hamedoun, M. Ait Ali, A. Benyoussef, H. Ez-Zahraouy, Appl. Phys. A. 126, 325 (2020)

    ADS  Google Scholar 

  25. M.A. Ahmed, N.G. Imam, M.M. Hefny, H.R. Gomaa, J. Ceram. Sci. Technol. 7(3), 235–241 (2016)

    Google Scholar 

  26. A.C. Lima, M.A. Morales, J.H. Araújo, J.M. Soares, D.M.A. Melo, A.S. Carriço, Ceram. Int. 41(9), 11804–11809 (2015)

    Google Scholar 

  27. T. Dippong, E.A. Levei, O. Cadar, A. Mesaros, G. Borodi, J. Anal. Appl. Pyrol. 12, 169–177 (2017)

    Google Scholar 

  28. T. Dippong, E.A. Levei, G. Borodi, F. Goga, L.B. Tudoran, J. Therm. Anal. Calorim. 119(2), 1001–1009 (2015)

    Google Scholar 

  29. T. Meron, Y. Rosenberg, Y. Lereah, G. Markovich, J. Magn. Magn. Mater. 292, 11–16 (2004)

    ADS  Google Scholar 

  30. N. Millot, S. Le Gallet, D. Aymes, F. Bernard, Y. Grin, J. Eur, Ceram. Soc. 27, 921–926 (2007)

    Google Scholar 

  31. B.G. Toksha, S.E. Shirsath, S.M. Patange, K.M. Jadhav, Solid. State. Commun. 147, 479–483 (2008). https://doi.org/10.1016/j.ssc.2008.06.040

    Article  ADS  Google Scholar 

  32. B. Abraime, K. El, L. Maalam, A. Fkhar, F. Mahmoud, M.A. Boschini, A. Tamerd, M. Benyoussef, E.K. Hamedoun, M.A. Hlil, A.E. Ali, O.M. Kenz, J. Mag. Magn. Mat. 500, 166416 (2020)

    Google Scholar 

  33. L. Fkhar, R. Lamouri, A. Nayad, M. Hamedoun, A. Benyoussef, H. Ez-Zahraouy, O. Mounkachi, M. Ait Ali, Adv. Mater. Process. Technol. (2020). https://doi.org/10.1080/2374068X.2020.1812325

    Article  Google Scholar 

  34. S.J. Zhang, C.W. Zhang, S.F. Zhang, W.X. Ji, P. Li, P.J. Wang, S.S. Li, S.S. Yan, Phys. Rev. B. 96, 205433 (2017)

    ADS  Google Scholar 

  35. C.W. Zhang, S.S. Yan, Appl. Phys. Lett. 95, 232108 (2009)

    ADS  Google Scholar 

  36. A.R. West, J. Wiley, S. Inc, ISBN 10, 0471917974 (1999)

    Google Scholar 

  37. C. Cheng, Phys. Rev. B 78, 132403 (2008)

    ADS  Google Scholar 

  38. C.J. O’Brien, Z. Rak, D.W. Brenner, J. Phys. Condens. Matter. 25, 445008 (2013)

    ADS  Google Scholar 

  39. V. Ziaei, T. Bredow, Eur. Phys. J. B 90, 29 (2017)

    ADS  Google Scholar 

  40. R. Masrour, O. Mounkachi, H. El Moussaoui, M. Hamedoun, A. Benyoussef, EK. Hlil, M. Ben Ali, K. Maalam El., J. Supercond. Nov. Magn. 26 3443–3447 (2013)

    Google Scholar 

  41. H. Elmoussaoui, M. Hamedoun, O. Mounkachi, A. Benyoussef, R. Masrour, E.K. Hlil, J. Supercond. Nov. Magn. 25, 1995–2002 (2012)

    Google Scholar 

  42. H. El Moussaoui, T. Mahfoud, S. Habouti, K. El Maalam, M. Ben Ali, M. Hamedoun, O. Mounkachi, R. Masrour, E.K. Hlil, A. Benyoussef, J. Magn. Magn. Mater. 405, 181–186 (2015)

    Google Scholar 

  43. O. Mounkachi, E. Salmani, H. ElMoussaoui, H. Ez-Zahraouy, M. Hamedoun, E.K. Hlil, A. Benyoussef, Mater. Lett. 34, 272–275 (2014)

    Google Scholar 

  44. K. Schwarz, J. Solid State Chem. 176(2), 319–328 (2003)

    ADS  Google Scholar 

  45. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    ADS  Google Scholar 

  46. R. Masrour, O. Mounkachi, H. ElMoussaoui, M. Hamedoun, A. Benyoussef, EK. Hlil, M. Ben Ali, K. El Maalam., J. Supercond. Nov. Magn. (2013)https://doi.org/10.1007/s10948-013-21864

    Article  Google Scholar 

  47. V. Kumar, A. Rana, M.S. Yadav, R.P. Pant, J. Magn. Magn. Mater 320, 1729–1734 (2008)

    ADS  Google Scholar 

  48. P.C. Rajath Varma, R.S. Manna, D. Banerjee, M.R. Varma, K.G. Suresh, A.K. Nigam, J. Alloys. Compd 453, 298–303 (2008)

    Google Scholar 

  49. Y.H. Hou, Y.J. Zhao, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu, D.C. Zeng, L.S. Wen, J. Phys. D. Appl. Phys. 43–44 (2010)

  50. Y.L. Huang, W.B. Fan, Y.H. Hou, K.X. Guo, Y.F. Ouyang, Z.W. Liuc, J. Magn. Magn. Mater. 429, 263–269 (2017)

    ADS  Google Scholar 

  51. Y.H. Hou, X.T. Yan, Y.L. Huang, S.H. Zheng, S.J. Hou, Y.F. Ouyang, J. Magn. Magn. Mater. 495, 165862 (2020)

    Google Scholar 

  52. B.S. Holinsworth, D. Mazumdar, H. Sims, Q.-C. Sun, 1M.K. Yurtisigi, S.K. Sarker, A. Gupta, W.H. Butler, J.L. Musfeldt, Appl. Phys. Lett. 103, 082406 (2013)

    ADS  Google Scholar 

  53. A.V. Ravindra, M. Chandrika, Ch. Rajesh, P. Kollu, S. Ju, S.D. Ramarao, Eur. Phys. J. Plus 134, 296 (2019)

    Google Scholar 

  54. R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    ADS  Google Scholar 

  55. R.C. Rai, S. Wilser, M. Guminiak, B. Cai, M.L. Nakarmi, Appl. Phys. A: Mater. Sci. Process. 106, 207 (2012)

    ADS  Google Scholar 

  56. A.V. Ravindra, P. Padhan, W. Prellier, Appl. Phys. Lett. 101, 161902 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdellaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghrich, K., Abdellaoui, M., Mamouni, N. et al. Experimental and first-principles study of the origin of the magnetic properties of CoFe2O4 spinel ferrite. Appl. Phys. A 126, 940 (2020). https://doi.org/10.1007/s00339-020-04114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04114-z

Keywords

Navigation