Skip to main content
Log in

Effects of the sintering temperature on the La0.63Gd0.37MnO3 structure and magnetic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

La0.63Gd0.37MnO3 material was synthesized using the Pechini-modified-sol–gel method at different sintering temperatures 600, 650, 750, 800, and 900 °C. After characterizing the samples structurally and magnetically, we report a direct relation between the crystallite size, particles agglomeration level, and material performance in field-cooling/zero-field-cooling magnetization modes, in addition to an inverse relation between the existence of Griffith phase and the samples’ magneto-caloric performance. The material sintered at 800 °C presents the maximum isothermal entropy change among others that is 7.57 J kg−1 K−1 at 7 T, in addition to a good performance shown at higher temperatures, making it a promising candidate for different cooling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Taguchi, H. Sakai, D. Choudhury, Magnetocaloric materials with multiple instabilities. Adv. Mater. 29(25), 1606144 (2017)

    Google Scholar 

  2. D. Franco, Pluralism and postmodernism, The Cambridge Companion to Postmodern American Fiction (Cambridge University Press, Cambridge, 2017), pp. 112–130

    Google Scholar 

  3. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23(7), 821–842 (2011)

    Google Scholar 

  4. E. Brück, Developments in magnetocaloric refrigeration. J. Phys. D Appl. Phys. 38(23), R381–R391 (2005)

    ADS  Google Scholar 

  5. J. Romero Gómez, R. Ferreiro Garcia, A. De Miguel Catoira, M. Romero Gómez, Magnetocaloric effect: a review of the thermodynamic cycles in magnetic refrigeration. Renew. Sustain. Energy Rev. 17, 74–82 (2013)

    Google Scholar 

  6. A. Kitanovski, P.W. Egolf, Thermodynamics of magnetic refrigeration. Int. J. Refrig. 29(1), 3–21 (2006)

    Google Scholar 

  7. A.S. Chernyshov, Y. Mudryk, V.K. Pecharsky, K.A. Gschneidner, Temperature and magnetic field-dependent X-ray powder diffraction study of dysprosium. Phys. Rev. B 77(9), 094132 (2008)

    ADS  Google Scholar 

  8. A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, Boca Raton, 2016)

    Google Scholar 

  9. P.K. Muduli, G. Singh, R. Sharma, R.C. Budhani, Magnetotransport in polycrystalline La2/3Sr1/3MnO3 thin films of controlled granularity. J. Appl. Phys. 105(11), 113910 (2009)

    ADS  Google Scholar 

  10. J.M. Bowman, D.J. Williams, S.F.Y. Motta, Low climate change impact solution: household refrigerators/freezers. in CPI Proceedings (2010)

  11. A.M. Tishin, Y.I. Spichkin, V.I. Zverev, P.W. Egolf, A review and new perspectives for the magnetocaloric effect: new materials and local heating and cooling inside the human body. Int. J. Refrig. 68, 177–186 (2016)

    Google Scholar 

  12. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71(14), 2331–2333 (1993)

    ADS  Google Scholar 

  13. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)

    ADS  Google Scholar 

  14. Y. Romaguera-Barcelay, J. Agostinho Moreira, A. Almeida, P.B. Tavares, J. Pérez de la Cruz, Structural, electrical and magnetic properties of magnetoelectric GdMnO3 thin films prepared by a sol–gel method. Thin Solid Films 564, 419–425 (2014)

    ADS  Google Scholar 

  15. S. Dong, R. Yu, S. Yunoki, J.-M. Liu, E. Dagotto, Ferromagnetic tendency at the surface of CE-type charge-ordered manganites. Phys. Rev. B 78(6), 064414 (2008)

    ADS  Google Scholar 

  16. E. Dagotto, T. Hotta, A. Moreo, Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344(1–3), 1–153 (2001)

    ADS  Google Scholar 

  17. C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82(3), 403–405 (1951)

    ADS  Google Scholar 

  18. V.K. Pecharsky, J. Cui, D.D. Johnson, (Magneto)caloric refrigeration: is there light at the end of the tunnel? Philos. Trans. R. Soc. A Phys. Eng. Sci. 374(2074), 20150305 (2016)

    ADS  Google Scholar 

  19. A.J. Millis, P.B. Littlewood, B.I. Shraiman, Double exchange alone does not explain the resistivity of La1xSrxMnO3. Phys. Rev. Lett. 74(25), 5144–5147 (1995)

    ADS  Google Scholar 

  20. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature 426(6962), 55–58 (2003)

    ADS  Google Scholar 

  21. Y.S. Chai et al., Intrinsic ferroelectric polarization of orthorhombic manganites with E-type spin order. Phys. Rev. B 85(18), 184406 (2012)

    ADS  Google Scholar 

  22. J.M. De Teresa et al., Evidence for magnetic polarons in the magnetoresistive perovskites. Nature 386(6622), 256–259 (1997)

    ADS  Google Scholar 

  23. R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6(1), 21–29 (2007)

    ADS  Google Scholar 

  24. H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162(1), 317–338 (1994)

    Google Scholar 

  25. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science (80-) 264(5157), 413–415 (1994)

    ADS  Google Scholar 

  26. C.N.R. Rao, A.K. Cheetham, Charge ordering in manganates. Science (80-) 276(5314), 911–912 (1997)

    Google Scholar 

  27. M. Iqbal, M.N. Khan, A.A. Khan, Structural, magnetic, magnetocaloric and critical behavior studies in the vicinity of the paramagnetic to ferromagnetic phase transition temperature in LaMnO3+δ compound. J. Magn. Magn. Mater. 465(April), 670–677 (2018)

    ADS  Google Scholar 

  28. M. Iqbal et al., Structure and charge transport mechanism in hydrothermally synthesized (La0.5Ba0.5MnO3) cubic perovskite manganite. J. Mater. Sci. Mater. Electron. 28(20), 15065–15073 (2017)

    Google Scholar 

  29. M.-H. Phan, S.-C. Yu, N.H. Hur, Excellent magnetocaloric properties of La0.7Ca0.3−xSrxMnO3 (0.05 ≤ x ≤ 0.25) single crystals. Appl. Phys. Lett. 86(7), 072504 (2005)

    ADS  Google Scholar 

  30. H. Ben Khlifa et al., “Critical behaviour and filed dependence of magnetic entropy change in K-doped manganites Pr0.8Na0.2−xKxMnO3 (x = 0.10 and 0.15). J. Solid State Chem. 257, 9–18 (2018)

    ADS  Google Scholar 

  31. B. Arayedh, S. Kallel, N. Kallel, O. Peña, Influence of non-magnetic and magnetic ions on the magneto caloric properties of La0.7Sr0.3Mn0.9M0.1O3 doped in the Mn sites by M = Cr, Sn, Ti. J. Magn. Magn. Mater. 361, 68–73 (2014)

    ADS  Google Scholar 

  32. R. Zhao et al., The oxygen vacancy effect on the magnetic property of the LaMnO3−δ thin films. Appl. Phys. Lett. 102(12), 122402 (2013)

    ADS  Google Scholar 

  33. J. Hemberger et al., Magnetic properties and specific heat of RMnO3(R = Pr, Nd). Phys. Rev. B 69(6), 064418 (2004)

    ADS  Google Scholar 

  34. V. Markovich et al., Magnetic properties of nanocrystalline La1–xMnO3+δ manganites: size effects. J. Phys. Condens. Matter 19(34), 346210 (2007)

    Google Scholar 

  35. J. Hemberger et al., Complex interplay of 3d and 4f magnetism in La1xGdxMnO3. Phys. Rev. B Condens. Matter Mater. Phys. 70(2), 1–8 (2004)

    Google Scholar 

  36. M. Stavinoha, C.L. Huang, K.P. Devlin, J.C. Fettinger, S.M. Kauzlarich, E. Morosan, Size, disorder, and charge doping effects in the antiferromagnetic series Eu1xAxGa4 (A = Ca, Sr, or La). J. Solid State Chem. 285, 121232 (2020)

    Google Scholar 

  37. M.P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, Filed Aug. 26, 1963,  Ser. No. 304,434

  38. S. Esposito, ‘Traditional’ sol–gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials (Basel) 12(4), 668 (2019)

    ADS  Google Scholar 

  39. C.J. Brinker, G.W. Scherer, Sol–Gel Science (Elsevier, Amsterdam, 1990)

    Google Scholar 

  40. A. Arulraj, R. Mahesh, G.N. Subbanna, R. Mahendiran, A.K. Raychaudhuri, C.N.R. Rao, Insulator-metal transitions, giant magnetoresistance, and related aspects of the cation-deficient LaMnO3 compositions La1δMnO3 and LaMn1δ′O3. J. Solid State Chem. 127(1), 87–91 (1996)

    ADS  Google Scholar 

  41. P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math. Klasse 2, 98–100 (1918)

    Google Scholar 

  42. S. Dhara, R.R. Chowdhury, B. Bandyopadhyay, Strong memory effect at room temperature in nanostructured granular alloy Co0.3Cu0.7. RSC Adv. 5(116), 95695–95702 (2015)

    Google Scholar 

  43. A. Sadhu, H.G. Salunke, S. Bhattacharyya, Coexistence of high magnetization and anisotropy with non-monotonic particle size effect in ferromagnetic PrMnO3 nanoparticles. J. Phys. Chem. C 121(38), 21029–21036 (2017)

    Google Scholar 

  44. B.N. Sahu, K.G. Suresh, N. Venkataramani, S. Prasad, R. Krishnan, Temperature and field dependent magnetization studies on nano-crystalline ZnFe2O4 thin films. AIP Adv. 8(5), 056118 (2018)

    ADS  Google Scholar 

  45. S. Banik, N. Banu, I. Das, Evolution from non-Griffiths phase to Griffiths phase: giant enhancement of magnetoresistance in nanocrystalline (La0.4Y0.6)0.7Ca0.3MnO3 compound. J. Alloys Compd. 745, 753–760 (2018)

    Google Scholar 

  46. P.T. Phong et al., Magnetic field dependence of Griffith phase and critical behavior in La0.8Ca0.2MnO3 nanoparticles. J. Magn. Magn. Mater. 475, 374–381 (2019)

    ADS  Google Scholar 

  47. T. Tajiri, M. Mito, H. Deguchi, A. Kohno, Magnetic properties of GdMnO3 nanoparticles embedded in mesoporous silica. Phys. B Condens. Matter 536, 111–114 (2018)

    ADS  Google Scholar 

  48. B. Ingham, M.F. Toney, X-ray diffraction for characterizing metallic films, in Metallic Films for Electronic, Optical and Magnetic Applications, ed. by K. Barmak, K. Coffey (Elsevier, Amsterdam, 2014), pp. 3–38

    Google Scholar 

  49. D. Vollath, Nanomaterials: An Introduction to Synthesis, Properties, and Applications, 2nd edn. (Wiley-VCH, Weinheim, 2013)

    Google Scholar 

  50. R.C. Sahoo, S. Das, S.K. Giri, D. Paladhi, T.K. Nath, Size modulated Griffiths phase and spin dynamics in double perovskite Sm1.5Ca0.5CoMnO6. J. Magn. Magn. Mater. 469, 161–170 (2019)

    ADS  Google Scholar 

  51. A. Tozri, E. Dhahri, Structural and magnetotransport properties of (La, Pr)–Ba manganites. J. Alloys Compd. 783, 718–728 (2019)

    Google Scholar 

  52. M. Sasaki, P.E. Jönsson, H. Takayama, P. Nordblad, Comment on ‘Memory effects in an interacting magnetic nanoparticle system’. Phys. Rev. Lett. 93(13), 139701 (2004)

    ADS  Google Scholar 

  53. I. Klik, C. Chang, J. Lee, Master equation approach to anhysteresis of noninteracting particles. J. Appl. Phys. 75(10), 5487–5489 (1994)

    ADS  Google Scholar 

  54. Y. Sun, M.B. Salamon, K. Garnier, R.S. Averback, Memory effects in an interacting magnetic nanoparticle system. Phys. Rev. Lett. 91(16), 167206 (2003)

    ADS  Google Scholar 

  55. R. Hamdi, A. Tozri, E. Dhahri, L. Bessais, Brilliant effect of Ca substitution in the appearance of magnetic memory in Dy0.5(Sr1−xCax)0.5MnO3 (x = 0.3) manganites. Intermetallics 89, 118–122 (2017)

    Google Scholar 

  56. V. Chaudhary, X. Chen, R.V. Ramanujan, Iron and manganese based magnetocaloric materials for near room temperature thermal management. Prog. Mater. Sci. 100, 64–98 (2019)

    Google Scholar 

  57. J.Y. Law, The magnetocaloric effect of iron-based soft magnetic alloys (Nanyang Technological University, Singapore, 2012)

    Google Scholar 

  58. B.R. Hansen, Materials for room temperature magnetic refrigeration, Risø-PhD-62 (EN) July 2010

  59. S. Mahana, U. Manju, D. Topwal, Giant magnetocaloric effect in GdAlO3and a comparative study with GdMnO3. J. Phys. D Appl. Phys. 50(3), 035002 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This publication was made possible by an Award [GSRA5-2-0510-18049] from Qatar National Research Fund (a member of Qatar Foundation). The contents herein are solely the responsibility of the authors. The authors would like to acknowledge the contribution of Core Labs group supervised by Dr. Said A. Mansour in Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, especially, Dr. Akshath Raghu Shetty for carrying out the XRD measurements, Dr. Mujaheed Pasha and Mr. Mohamed I. Helal for conducting the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Haik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasras, A., Hamdi, R., Mansour, S. et al. Effects of the sintering temperature on the La0.63Gd0.37MnO3 structure and magnetic properties. Appl. Phys. A 126, 838 (2020). https://doi.org/10.1007/s00339-020-04032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04032-0

Keywords

Navigation