Skip to main content
Log in

Improving the ferromagnetic exchange coupling in hard τ-Mn53.3Al45.0C1.7 and soft Mn50B50 magnetic alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To improve the magnetic properties of the hard-magnetic phase \(\tau \)-Mn53.3Al45.0C1.7, it was mixed with different quantities of the soft magnetic phase Mn50B50 and annealed at different temperatures. Micrometric powders of the τ phase and the soft magnetic phase were mixed using solid-state procedures. The resulting magnetic properties were as follow: for the hard phase was saturation magnetization of Ms = 38.22 Am2kg−1 at 1.8 T, remanent magnetization of Mr = 20.10 Am2kg−1, coercive force of μ0Hc = 0.378 T, and maximum energy product of (BH)max = 3.09 kJm−3, and for the soft phase was Ms = 85.51 Am2kg−1 and a μ0Hc = 0.018 T. After the preparation of different compositions of the mixture, and their annealing at different temperatures, it was concluded that the sample MnAlC/MnB with 2 wt.% of MnB phase annealed at 400 ℃ is the best one. Its magnetic properties were Ms = 68.82 Am2kg−1 at 3.0 T, Mr = 36.26 Am2kg−1, μ0Hc = 0.373 T and (BH)max = 9.79 kJ m−3 which displays an improvement of about 7 kJ m−3 when compared to the original τ phase. Therefore, these magnetic properties are better than those shown by the pure τ phase. These properties were improved more when the sample was previously aligned and measured in parallel to the applied field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Madugundo, N.V.R Rao, A.M, Schönhöbel, D. Salazar, A. A. El-Gendy, Recent developments in nanostructured permanent magnet materials and their processing methods. In Magnetic Nanostructured Materials (Elsevier, 2018), pp. 157–198. https://doi.org/10.1016/B978-0-12-813904-2.00006-1

  2. G.A. Pérez Alcázar, Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales 40, 221–233 (2016)

    Article  Google Scholar 

  3. S. Sugimoto, In History and Future of Soft and Hard Magnetic Materials ed. by Keisuke Fujisaki Magnetic Material for Motor Drive Systems (Springer, Singapore, 2019) pp. 261–277

  4. J.M.D. Coey, Hard magnetic materials: a perspective. IEEE Trans. Magn. 47(12), 4671–4681 (2011)

    Article  ADS  Google Scholar 

  5. J.M.D. Coey, Scrip. Mater. 67, 524 (2012)

    Article  ADS  Google Scholar 

  6. J.M.D. Coey, J. Phys, Cond. Matt. 26, 064211 (2014)

    Article  Google Scholar 

  7. J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian, D. Sellmyer, Acta. Mater. 158, 118 (2018)

    Article  ADS  Google Scholar 

  8. Alfa Aesar [Internet]. [United Stated]: Metals and Materials [Updated in 2020] Available: htttp://www.alfa.com/es/ Accessed 17 Aug 2020

  9. J. Yang, W. Yang, Z. Shao, D. Liang, H. Zhao, Y. Xia, Y. Yang, Chin. Phys. B. 27, 117503 (2018)

    Article  ADS  Google Scholar 

  10. R. Madugundo, G.C. Hadjipanayis, J. Appl. Phys. 119, 013904 (2016)

    Article  ADS  Google Scholar 

  11. H. Jian, K.P. Skokov, O. Gutfleisch, J. Alloy. Comp. 622, 524 (2015)

    Article  Google Scholar 

  12. P. Saravanan, J.H. Hsu, V.T.P. Vinod, M. Černík, S.V. Kamat, Appl. Phys. Lett. 107, 192407 (2015)

    Article  ADS  Google Scholar 

  13. S. Zhao, Y. Wu, J. Wang, Y. Jia, T. Zhang, T. Zhang, C. Jiang, J. Magn. Magn. Mater. 483, 164 (2019)

    Article  ADS  Google Scholar 

  14. O. Obi, L. Burns, Y. Chen, T. Fitchorov, S. Kim, K. Hsu, D. Heiman, L.H. Lewis, V.G. Harris, J. Alloys. Comp. 582, 598 (2014)

    Article  Google Scholar 

  15. R.W. Mccallum, L.H. Lewis, R. Skomski, M.J. Kramer, I.E. Anderson, Annu. Rev. Mater. Res. 44, 451 (2014)

    Article  ADS  Google Scholar 

  16. F. J. Villacorta, L.H. Lewis. Nanomagnetism, 161–189 (2014).

  17. L.H. Lewis, F.J. Villacorta, Metall. Mater. Trans. A 44, 2 (2012)

    Article  Google Scholar 

  18. S. Hirosawa, In The Rare Earths Problem for Permanent Magnets ed. by Keisuke Fujisaki Magnetic Material for Motor Drive Systems (Springer, Singapore, 2019) pp. 349–357

  19. E.F. Kneller, R. Hawig, IEEE Trans. Magn. 27(4), 3588 (1991)

    Article  ADS  Google Scholar 

  20. H.A. Davies, J.I. Betancourt, C.L. Harland, Scr. Mater. 44, 1337 (2001)

    Article  Google Scholar 

  21. J.I. Betancourt, H.A. Davies, J. Appl. Phys. 85, 5911 (1999)

    Article  ADS  Google Scholar 

  22. A. Ceglarek, P. Gębara, D. Płusa, Acta Phys. Pol. A 127, 570 (2015)

    Article  ADS  Google Scholar 

  23. J. Park, Y.K. Hong, J. Lee, W. Lee, C.J. Choi, X. Xu, A.M. Lane, J. Magn. Magn. Mater. 19(1), 55 (2014)

    Google Scholar 

  24. H. Martínez Sánchez, L.E. Zamora Alfonso, J.S. Trujillo Hernandez, G.A. Pérez Alcázar, J. Magn. Magn. Mater. 473, 221–227 (2019)

    Article  ADS  Google Scholar 

  25. H.X. Wang, P.Z. Si, W. Jiang, J.J. Liu, J.G. Lee, C.J. Choi, H.L. Ge, Adv. Mater. Res. 287, 1492 (2011)

    Google Scholar 

  26. J.S. Trujillo Hernandez, F. Maccaric, L.G. Marshalld, J.A. Tabares, G.A. Pérez Alcázar, J. Supercond. Nov. Magn. 31, 3941–3947 (2018)

    Article  Google Scholar 

  27. H. Bustos Rodríguez, J.P. Perafan, D. Oyola Lozano, Y. Rojas Martínez, G.A. Pérez Alcázar, L.E. Zamora Alfonso, Hyp. Int. 240, 85 (2019)

    Article  ADS  Google Scholar 

  28. H. Zhu, C. Ni, F. Zhang, Y. Du, J.Q. Xiao, J. Appl. Phys. 97, 10M512 (2005)

    Article  Google Scholar 

  29. T. Şimşek, Ş. Özcan, IEEE Trans. Magn. 51, 7 (2015)

    Article  Google Scholar 

  30. S. Ma, K. Bao, Q. Tao, P. Zhu, T. Ma, B. Liu, Y. Liu, T. Cui, Scientific reports. 7, 43759 (2017)

    Article  ADS  Google Scholar 

  31. P. Nieves, S. Arapan, T. Schrelf, S.C. Lopez, Phys. Rev. B. 96, 224411 (2017)

    Article  ADS  Google Scholar 

  32. T. Schrefl, H. Kronmüller, J. Fidler, J. Magn. Magn. Mater. 127, L273 (1993)

    Article  ADS  Google Scholar 

  33. H. Qian, P. Si, J.T. Lim, J. Kim, J. Park, C. Choi, J. Kore, Phys. Socie. 73, 1703 (2018)

    Google Scholar 

  34. A.C. Larson, R.B. Von Dreele, General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR, pp. 86–748 (2004).

  35. C. Ma, Chem. Phys. Lett. 696, 31 (2018)

    Article  ADS  Google Scholar 

  36. Z. Xiang, Y. Song, B. Deng, E. Cui, L. Yu, W. Lu, J. Alloys Compd. 783, 416 (2019)

    Article  Google Scholar 

  37. I.A. Radulov, V.V. Popov, A. Koptyug, F. Maccari, A. Kovalevsky, S. Essel, J. Gassmann, K.P. Skokov, M. Bamberger, Add. Manuf. 30, 100787 (2019)

    Google Scholar 

  38. S. Shafeie, H. Fang, D. Hedlund, A. Nyberg, P. Svedlindh, K. Gunnarsson, M. Sahlberg, J. Sol. Stat. Chem. 274, 229 (2019)

    Article  ADS  Google Scholar 

  39. G.C. Hadjipanayis, J. Magn. Magn. Mater. 200, 373 (1999)

    Article  ADS  Google Scholar 

  40. A.M. Gabay, G.C. Hadjipanayis, J. Magn. Magn. Mater. 422, 43 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-19-2-0030. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. Part of the research was also sponsored by COLCIENCIAS under Contract 110671250407. Also, part of this research was sponsored by Universidad del Valle under the project with CI 71181. The authors would like to thank Dr. Anit Giri, from the U.S. Army Research Laboratory for a critical discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Martínez Sánchez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, H.M., Alfonso, L.E.Z., Hernandez, J.S.T. et al. Improving the ferromagnetic exchange coupling in hard τ-Mn53.3Al45.0C1.7 and soft Mn50B50 magnetic alloys. Appl. Phys. A 126, 843 (2020). https://doi.org/10.1007/s00339-020-04025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04025-z

Keywords

Navigation