Skip to main content
Log in

More physical understanding of current characteristics of tunneling field-effect transistor leveraged by gate positions and properties through dual-gate and gate-all-around structuring

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, a tunneling field-effect transistor (TFET) in the structure that can maximize the electrostatic effects in determining its electrical performances is optimally designed and characterized. The featured device structure includes gate-all-around (GAA) channel and dual gates (DuGs) identified as control gate (CG) and adjust gate (AG), respectively. Not along with the design tasks, more fundamental studies on the effects of respective gates on device performances are sought. It has been found that the relatively different vicinities of the DuGs to source and drain junctions have differentiable dominances in controlling the primary direct-current (DC) parameters of the TFET including threshold voltage (Vth), on-state current (Ion), subthreshold swing (S), and on/off current ratio (Ion/Ioff). For the systematic study, four different cases have been presumably schemed giving the degree of freedom in gate workfunctions and inter-gate connectivity. It has been found that the CG at the source side more effectively modulates Vth, Ioff, and S, while the AG at the drain side shows the higher controllability over Ion and Ion/Ioff of the TFET. An optimally designed GAA DuG demonstrated Ion/Ioff > 1011 along with a small S of 14.6 mV/dec, which supports the strong potential of the GAA DuG TFET in the low-power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Jia, Z. Lin, Y. Huang, X. Duan, Chem. Rev. 119, 9074 (2019)

    Article  Google Scholar 

  2. A.C. Seabaugh, Q. Zhang, Proc. IEEE 98, 2095 (2010)

    Article  Google Scholar 

  3. International Roadmap for Devices and Systems (IRDSTM) 2018 Edition.https://irds.ieee.org/editions/2018. Accessed 15 July 2019

  4. J.-T. Park, J.-P. Colinge, IEEE Trans. Electron. Devices 49, 2222 (2002)

    Article  ADS  Google Scholar 

  5. S. Go, W.J. Lee, S. Cho, J. Semicond. Technol. Sci. 19, 551 (2019)

    Article  Google Scholar 

  6. K. Boucart, A.M. Ionescu, IEEE Trans. Electron. Devices 54, 1725 (2007)

    Article  ADS  Google Scholar 

  7. E. Ko, J.W. Lee, C. Shin, IEEE Electron. Device Lett. 38, 418 (2017)

    Article  ADS  Google Scholar 

  8. S. Kim, G. Myeong, W. Shin, H. Lim, B. Kim, T. Jin, S. Chang, K. Watanabe, T. Taniguchi, S. Cho, Nat. Nanotechnol. 15, 203 (2020)

    Article  ADS  Google Scholar 

  9. S. Cho, I.M. Kang, K.R. Kim, B.-G. Park, J.S. Harris, Appl. Phys. Lett. 103, 222102 (2013)

    Article  ADS  Google Scholar 

  10. W.G. Vandenberghe, A.S. Verhulst, B. Sorée, W. Magnus, G. Groeseneken, Q. Smets, M. Heyns, M.V. Fischetti, Appl. Phys. Lett. 102, 013510 (2013)

    Article  ADS  Google Scholar 

  11. S. Cristoloveanu, J. Wan, A. Zaslavsky, IEEE J. Electron. Devices Soc. 4, 215 (2016)

    Article  Google Scholar 

  12. W.Y. Choi, B.-G. Park, J.D. Lee, T.-J.K. Liu, IEEE Electron. Device Lett. 28, 743 (2007)

    Article  ADS  Google Scholar 

  13. W. Cao, D. Sarkar, Y. Khatami, J. Kang, K. Banerjee, AIP Adv. 4, 067141 (2014)

    Article  ADS  Google Scholar 

  14. R. Jhaveri, V. Nagavarapu, J.C.S. Woo, IEEE Trans. Electron. Devices 58, 80 (2011)

    Article  ADS  Google Scholar 

  15. A.S. Verhulst, W.G. Vandenberghe, K. Maex, S. De Gendt, M.M. Heyns, G. Groeseneken, IEEE Electron. Device Lett. 29, 1398 (2008)

    Article  ADS  Google Scholar 

  16. W.Y. Choi, W. Lee, IEEE Trans. Electron. Devices 57, 2317 (2010)

    Article  ADS  Google Scholar 

  17. J.H. Seo, Y.J. Yoon, S. Lee, J.H. Lee, S. Cho, I.M. Kang, Curr. Appl. Phys. 15, 208 (2015)

    Article  ADS  Google Scholar 

  18. Y. Jeon, M. Kim, D. Lim, S. Kim, Nano Lett. 15, 4905 (2015)

    Article  ADS  Google Scholar 

  19. W.C. Chen, H.T. Lue, Y.H. Hsiao, C.Y. Lu, IEEE Trans. Electron. Devices 64, 1336 (2017)

    Article  ADS  Google Scholar 

  20. N. Navlakha, J.-T. Lin, A. Kranti, IEEE Electron Device Lett. 37, 1127 (2016)

    Article  ADS  Google Scholar 

  21. J. S. Park, U.S. Patent No. 6168998, (2001).

  22. Atlas User’s Manual, Device Simulation Software (Silvaco Inc, Santa Clara, 2018)

    Google Scholar 

  23. W. Shockley, W.T. Read, Phys. Rev. 87, 835 (1952)

    Article  ADS  Google Scholar 

  24. J. Dziewior, W. Schmid, Appl. Phys. Lett. 31, 346 (1977)

    Article  ADS  Google Scholar 

  25. A. Wettstein, A. Schenk, W. Fichtner, IEEE Trans. Electron. Devices 48, 279 (2001)

    Article  ADS  Google Scholar 

  26. A. Schenk, J. Appl. Phys. 84, 3684 (1998)

    Article  ADS  Google Scholar 

  27. C. Lombardi, S. Manzini, A. Saporito, M. Vanzi, IEEE Trans. Comput. Des. Integr. Circ. Syst. 7, 1164 (1988)

    Article  Google Scholar 

  28. J. Wan, C. Le Royer, A. Zaslavsky, S. Cristoloveanu, Solid State Electron. 65–66, 226 (2011)

    Article  ADS  Google Scholar 

  29. L. De Michielis, N. Dağtekin, A. Biswas, L. Lattanzio, L. Selmi, M. Luisier, H. Riel, A.M. Ionescu, Appl. Phys. Lett. 103, 123509 (2013)

    Article  ADS  Google Scholar 

  30. A. Shaker, A. Maged, A. Elshorbagy, A. Abouelainain, M. Elsabbagh, Semicond. Sci. Technol. 35, 025007 (2020)

    Article  ADS  Google Scholar 

  31. K. Han, S. Long, Z. Deng, Y. Zhang, J. Li, Micromachines 11, 164 (2020)

    Article  Google Scholar 

  32. A.K. Gupta, A. Raman, N. Kumar, IEEE Trans. Electron. Devices 66, 3506 (2019)

    Article  ADS  Google Scholar 

  33. K.E. Moselund, M.T. Björk, H. Schmid, H. Ghoneim, S. Karg, E. Lörtscher, W. Riess, H. Riel, IEEE Trans. Electron. Devices 58, 2911 (2011)

    Article  ADS  Google Scholar 

  34. J. Madan, R.S. Gupta, R. Chaujar, Jpn. J. Appl. Phys. 54, 094202 (2015)

    Article  ADS  Google Scholar 

  35. R. Gandhi, Z. Chen, N. Singh, K. Banerjee, S. Lee, IEEE Electron. Device Lett. 32, 1504 (2011)

    Article  ADS  Google Scholar 

  36. J.S. Yoon, K. Kim, C.K. Baek, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  37. Y.R. Jhan, Y.C. Wu, M.F. Hung, IEEE Electron. Device Lett. 34, 1482 (2013)

    Article  ADS  Google Scholar 

  38. H.M. Fahad, M.M. Hussain, IEEE Trans. Electron. Devices 60, 1034 (2013)

    Article  ADS  Google Scholar 

  39. N. Navlakha, A. Kranti, J. Appl. Phys. 122, 044502 (2017)

    Article  ADS  Google Scholar 

  40. B. Jafari Touchaee, N. Manavizadeh, IEEE Trans. Electron Devices 62, 3147 (2015)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by Brain Korea (BK) 21 Program in Seoul National University and also supported by the Gachon University Research Fund (GCU-2019-0324). The simulation task was supported by IDEC Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Gook Park.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.H.R., Cho, S. & Park, BG. More physical understanding of current characteristics of tunneling field-effect transistor leveraged by gate positions and properties through dual-gate and gate-all-around structuring. Appl. Phys. A 126, 839 (2020). https://doi.org/10.1007/s00339-020-04015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04015-1

Keywords

Navigation