Skip to main content
Log in

Sol–gel synthesis and physical characterization of high impact polystyrene nanocomposites based on Fe2O3 doped with ZnO

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Manufacturing of organic–inorganic composites with enhanced properties particularly, Fe2O3–ZnO/high impact polystyrene (HIPS) nanocomposites promising candidates for many requests. The presence of nanoparticles enhances the structural, thermal, and chemical stabilities, mechanical and operational performance of the nanocomposite matrices. Modified HIPS nanocomposites based on Fe2O3 doped by (0.0–0.6) ZnO were synthesized using the sol–gel method and gel casting approach. The structures, spectroscopic, dielectric and mechanical properties of the synthesized polymeric nanocomposites were investigated by XRD, TEM, FT-IR, UV–vis-DRs, terahertz (THz), dielectric and mechanical analysis. From chemical structural results, it can be confirmed the existence of ZnO in Fe2O3 and the internal structure rearrangement of iron oxide before dispersion into the HIPS matrix. The UV–Vis DRs show that the optical band gap decreases significantly with the increase of ZnO content in the nanocomposite. THz spectra in the spectral range of 0.2–2.5 THz showed an increase in the refractive indices and absorption coefficients for the prepared nanocomposites. Besides, the mechanical properties were affected by the addition of ZnO to HIPS-Fe2O3 where the elongation at break %, Young’s modulus, and maximum strength varied values relying on the applied ratio of ZnO especially for the ratio of 0.4. Finally, the produced nanocomposites can find widespread applications in optoelectronic, chemical, and biological applications besides their feasibility to apply on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Wan, C. Ma, K. Hu, R. Zhou, X. Mao, S. Pan, L.H. Wong, J. Xu, J. Alloy. Compd. 680, 182 (2016)

    Google Scholar 

  2. K. Wei, G.S. Nolas, Scripta Mater. 150, 70 (2018)

    Google Scholar 

  3. Q.C. Lv, Y. Li, Z.K. Zhong, H.J. Wu, F.A. He, K.H. Lam, Appl. Surf. Sci. 441, 945 (2018)

    ADS  Google Scholar 

  4. A.A. Higazy, H. Afifi, A.H. Khafagy, M.A. El-Shahawy, A.M. Mansour, Ultrasonics 44, e1439 (2006)

    Google Scholar 

  5. A.M.C. Rocha, L.H. De Carvalho, A.G. De Souza, J. Braz. Chem. Soc. 8, 197 (1997)

    Google Scholar 

  6. Y. Furukawa, in Science in the Twentieth Century (2013), pp. 547–563.

  7. G.A. Stahl, J. Chem. Educ. 59, A248 (1982)

    Google Scholar 

  8. B. Hoffmann, C. Dietrich, R. Thomann, C. Friedrich, R. Mülhaupt, Macromol. Rapid Commun. 21, 57 (2000)

    Google Scholar 

  9. N.C. Pramanik, S. Das, P. Kumar Biswas, Mater. Lett. 56, 671 (2002)

    Google Scholar 

  10. S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, J. Phys. Chem. Solids 75, 236 (2014)

    ADS  Google Scholar 

  11. P. Sreekumari Nair, T. Radhakrishnan, N. Revaprasadu, C.G.C.E. Van Sittert, V. Djoković, A.S. Luyt, Mater. Lett. 58, 361 (2004)

    Google Scholar 

  12. M. Xiao, L. Sun, J. Liu, Y. Li, K. Gong, Polymer 43, 2245 (2002)

    Google Scholar 

  13. M. Marinović-Cincović, Z.V. Šaponjić, V. Djoković, S.K. Milonjić, J.M. Nedeljković, Polym. Degrad. Stab. 91, 313 (2006)

    Google Scholar 

  14. A.M. Motawie, S.M. Ahmed, E.A. El-Sabbagh, N.A. Mansour, D.E. Abulyazied, E.S. Ali, Egypt. J. Chem. 60, 261 (2017)

    Google Scholar 

  15. A.M. El Nahrawy, A.B.A. Hammad, A.M. Youssef, A.M. Mansour, A.M. Othman, Appl. Phys. A Mater. Sci. Process. 125, 46 (2019)

    ADS  Google Scholar 

  16. S.K. Esthappan, A.B. Nair, R. Joseph, Compos. B Eng. 69, 145 (2015)

    Google Scholar 

  17. A. Ibrahim, M.H. Abdel-Aziz, M.S. Zoromba, A.F. Al-Hossainy, Synth. Met. 238, 1 (2018)

    Google Scholar 

  18. I. Hejazi, B. Hajalizadeh, J. Seyfi, G.M.M. Sadeghi, S.H. Jafari, H.A. Khonakdar, Appl. Surf. Sci. 293, 116 (2014)

    ADS  Google Scholar 

  19. Y.R.C. Ureña, S.H.P. Bettini, P.R. Muñoz, L. Wittig, K. Rischka, P.N. Lisboa-Filho, Mater. Sci. Eng. C 49, 58 (2015)

    Google Scholar 

  20. A.M. Youssef, A.M. El-Nahrawy, A.B. Abou Hammad, Int. J. Biol. Macromol. 97, 561 (2017)

    Google Scholar 

  21. A.M. El Nahrawy, A.B.A. Hammad, A.M. Youssef, A.M. Mansour, A.M. Othman, Appl. Phys. A 125, 46 (2019)

    ADS  Google Scholar 

  22. A.M. El Nahrawy, A.M. Mansour, A.B. Abou Hammad, R.S. Ibrahim, A.M. Abouelnaga, M.S. Abdel-Aziz, J. Inorg. Organomet. Polym. Mater. 30, 3084 (2020)

    Google Scholar 

  23. R.S. Sabry, W.J. Aziz, M.I. Rahmah, Mater. Technol. 35, 326 (2020)

    Google Scholar 

  24. M.M. Khan, S. Kumar, A.N. Alhazaa, M. Al-Gawati, Mater. Sci. Semicond. Process. 87, 134 (2018)

    Google Scholar 

  25. A.A.M. Farag, F.S. Terra, A. Ashery, A.M. Mansour, J. Alloys Compd. 615, 604 (2014)

    Google Scholar 

  26. B.A. Hemdan, A.M. El Nahrawy, A.-F.M. Mansour, A.B.A. Hammad, Environ. Sci. Pollut. Res. 26, 9508 (2019)

    Google Scholar 

  27. M. Yamashita, C. Otani, M. Shimizu, H. Okuzaki, Appl. Phys. Lett. 99, 143307 (2011)

    ADS  Google Scholar 

  28. C. Manfredi, C. De Rosa, G. Guerra, M. Rapacciuolo, F. Auriemma, P. Corradini, Macromol. Chem. Phys. 196, 2795 (1995)

    Google Scholar 

  29. C.J.B. Clews, Nature 141, 513 (1938)

    ADS  Google Scholar 

  30. F.A. López, A. López-Delgado, J.L.M. De Vidales, E. Vila, J. Alloys Compd. 265, 291 (1998)

    Google Scholar 

  31. M. Ashtar, A. Munir, M. Anis-ur-Rehman, A. Maqsood, Mater. Res. Bull. 79, 14 (2016)

    Google Scholar 

  32. J. Sláma, A. Grusková, M. Ušáková, E. Ušák, J. Šubrt, J. Lukáč, J. Electr. Eng 57, 159 (2006)

    Google Scholar 

  33. B. An, D. Zhao, J. Hazard. Mater. 211–212, 332 (2012)

    Google Scholar 

  34. Z. Li-Yan, Y. Guo-Liu, X. Fei-Tan, S. Bo-Liu, G. Ming-Zeng, L. Hua-Jiang, M. Fang-Li, Z. Zhou, S. Liu, X. Xi-Cai, Chem. Eng. J. 314, 612 (2017)

    Google Scholar 

  35. A.M. El Nahrawy, A.A. Soliman, E.M.M. Sakr, H.A. El Attar, J. Ovonic Res. 14, 193 (2018)

    Google Scholar 

  36. S.E. Shirsath, B.G. Toksha, R.H. Kadam, S.M. Patange, D.R. Mane, G.S. Jangam, A. Ghasemi, J. Phys. Chem. Solids 71, 1669 (2010)

    ADS  Google Scholar 

  37. P. Kumar, V. Sharma, J.P. Singh, A. Kumar, S. Chahal, K. Sachdev, K.H. Chae, A. Kumar, K. Asokan, D. Kanjilal, J. Magn. Magn. Mater. 489, 165398 (2019)

    Google Scholar 

  38. M. Atif, M. Nadeem, R. Grössinger, R.S. Turtelli, J. Alloys Compd. 509, 5720 (2011)

    Google Scholar 

  39. A.M. Nuruzatulifah, A.A. Nizam, N.M.M.N. Ain, in Materials Today: Proceedings (Elsevier, 2016), pp. S112–S119

  40. A.M. Tama, S. Das, S. Dutta, M.D.I. Bhuyan, M.N. Islam, M.A. Basith, RSC Adv. 9, 40357 (2019)

    Google Scholar 

  41. M. Mishra, D.M. Chun, Appl. Catal. A 498, 126 (2015)

    Google Scholar 

  42. L. Li, X. Zhang, W. Zhang, L. Wang, X. Chen, Y. Gao, Colloids Surf. A 457, 134 (2014)

    Google Scholar 

  43. T. Wang, X. Jiang, C.W. Mao, Langmuir 24, 14042 (2008)

    Google Scholar 

  44. A.C.F.M. Costa, V.J. Silva, D.R. Cornejo, M.R. Morelli, R.H.G.A. Kiminami, L. Gama, J. Magn. Magn. Mater. 320, e370 (2008)

    ADS  Google Scholar 

  45. A.M. El Nahrawy, H.S. El-Deen, A.A. Soliman, W.M.M. Mosa, Egypt. J. Chem. 62, 525 (2019)

    Google Scholar 

  46. L. Yang, B. Kruse, J. Opt. Soc. Am. A 21, 1933 (2004)

    ADS  Google Scholar 

  47. A. Baykal, S. Esir, A. Demir, S. Güner, Ceram. Int. 41, 231 (2015)

    Google Scholar 

  48. A.M. Mansour, Silicon 11, 1989 (2019)

    Google Scholar 

  49. S. Suman, S. Chahal, A. Chahal, P. Chahal, Crystals 10, 273 (2020)

    Google Scholar 

  50. V.S. Sangawar, M.C. Golchha, Int. J. Sci. Eng. Res. 4, 2700 (2013)

    Google Scholar 

  51. J.A. Yabagi, M.I. Kimpa, M.N. Muhammad, S. Bin Rashid, E. Zaidi, M.A. Agam, in IOP Conference Series: Materials Science and Engineering (2018).

  52. G.M. El, S.A. Gad, M.M. Selim, IOSR J. Appl. Phys. 10, 47 (2018)

    Google Scholar 

  53. A.T. Ayoub, T.J.A. Craddock, M. Klobukowski, J. Tuszynski, Biophys. J. 107, 740 (2014)

    ADS  Google Scholar 

  54. J. Dash, S. Ray, N. Devi, N. Basutkar, R.G. Gonnade, A.V. Ambade, B. Pesala, J. Infrared Millim. Terahertz Waves 39, 636 (2018)

    Google Scholar 

  55. C. Stumm, K. Szielasko, T. Granath, C. Stauch, K. Mandel, Mater. Today Commun. 16, 174 (2018)

    Google Scholar 

  56. W. Xiong, J. Shen, Opt. Express 18, 21798 (2010)

    ADS  Google Scholar 

  57. J. Dash, S. Ray, N. Devi, N. Basutkar, A.V. Ambade, B. Pesala, J. Mol. Struct. 1184, 495 (2019)

    ADS  Google Scholar 

  58. S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B.M. Fischer, M. Koch, J. Mol. Struct. 1006, 41 (2011)

    ADS  Google Scholar 

  59. A. Ravagli, M. Naftaly, C. Craig, E. Weatherby, D.W. Hewak, Opt. Mater. 69, 339 (2017)

    ADS  Google Scholar 

  60. A.K. Azad, J. Han, W. Zhang, Appl. Phys. Lett. 88, 1 (2006)

    Google Scholar 

  61. A.V. Andrianov, A.N. Aleshin, A.K. Khripunov, V.N. Trukhin, Synth. Met. 205, 201 (2015)

    Google Scholar 

  62. Y. Huang, L. Liu, S. Zhang, H. Yu, J. Yang, Eur. Polym. J. 98, 347 (2018)

    Google Scholar 

  63. F. Amaral, C.P.L. Rubinger, F. Henry, L.C. Costa, M.A. Valente, A. Barros-Timmons, J. Non-Cryst. Solids 354, 5321 (2008)

    ADS  Google Scholar 

  64. T. Zhang, W. Huang, N. Zhang, T. Huang, J. Yang, Y. Wang, Eur. Polym. J. 94, 196 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mansour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Nahrawy, A.M., Abou Hammad, A.B., bakr, A.M. et al. Sol–gel synthesis and physical characterization of high impact polystyrene nanocomposites based on Fe2O3 doped with ZnO. Appl. Phys. A 126, 654 (2020). https://doi.org/10.1007/s00339-020-03822-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03822-w

Keywords

Navigation